STANDARDS ASSOCIATION OF AUSTRALIA.

Headquarters:

Science House, Gloucester and Essex Streets, Sydney.

AUGUST, 1942.

EMERGENCY STANDARD No. (E)D. 539-1941.

tacles

STANDARDS ASSOCIATION OF AUSTRALIA

AUSTRALIAN STANDARD SPECIFICATION FOR AIRCRAFT MATERIAL. (Emergency Series.)

45-TON CHROME-MOLYBDENUM STEEL TUBES (Suitable for Welding)

AMENDMENT.

Page 1, Title Note.

Delete the existing title note relating to sizes of tubes and substitute the following:

"For circular tubes $\frac{1}{2}$ in. diameter and over, and for all sizes of non-circular tubes. (For circular tubes under $\frac{1}{2}$ in. diameter, see A.S. No. (E)2D. 537.)"

Page 1, Clause 1 (a), Chemical Composition.

Add the following note relating to

Carbon . . . $0 \cdot 25$ to $0 \cdot 35$ per cent.*:

"* Attention is drawn to the desirability of limiting the carbon content to 0.32 per cent. maximum owing to difficulties which may arise in welding tubes if the carbon percentage exceeds this figure."

Pages 9 and 10, TABLE I. CIRCULAR TUBES.

Add, as the first line in each gauge tabulation as set out, the following data corresponding to each gauge size:

	1	2	3	4	5	6	7	. 8
		Limits on	Diameter.			35 1.1	Proof	Maximum
	Nominal Outside Diameter.	Mean Outside or Inside Diameter.	Extreme Outside Diameter.*	Nominal Area of Section.	Moment of Inertia.	Modulus of Section.	Bending Moment.	Weight.†
30 S.W.G. 28 S.W.G. 26 S.W.G.	in.	in. ±·003 ±·003 ±·003	in. ± · 003 ± · 003 ± · 003	sq. in. ·019 ·023 ·027	in.4 •00057 •00066 •00079	in.3 ·0023 ·0027 ·0032	1000 in. lb. •206 •242 •287	lb. per ft. ·080 ·092 ·108
24 S.W.G. 22 S.W.G. 20 S.W.G.	101 101 101 101 102	±·003 ±·003 ±·003	±·003 ±·003 ±·003	·033 ·042 ·052	·00095 ·0012 ·0014	·0038 ·0046 ·0057	·340 ·412 ·511	·127 ·161 ·198
17 S.W.G. 14 S.W.G. 11 S.W.G.	103 1-103 1-103	±·003	±·003 —	·078 	· 0020 —	·0078 — —	· 699 — —	•284

Price 1/-, post free 1/2.

^{*} The 0.2% proof stress of these tubes after welding may be expected to be not less than 28 tons per sq. in.

STANDARDS ASSOCIATION OF AUSTRALIA.

Headquarters:

Science House, Gloucester and Essex Streets, Sydney.

AUSTRALIAN STANDARD SPECIFICATION FOR AIRCRAFT MATERIAL

(Emergency Series)

45-TON CHROME-MOLYBDENUM STEEL TUBES (Suitable for Welding)

For circular tubes over ½ in. diameter and for all sizes of non-circular tubes. (For circular tubes ½ in. diameter and under, see A.S. No. (E)D.537.)

This standard forms one of a series prepared by the Standards Association of Australia at the request of Departments of the Commonwealth Government for use in relation to the supply of materials required for defence purposes. In appropriate cases these specifications will be reviewed for inclusion in the normal series of Australian standards.

1. Chemical Composition.

(a)	The chemical of	composi	tion of	t the	tubes si	ian be		. +	# 1
	Carbon						0.25 to 0.35 per cent.⊁	sund	arracied
	Manganese						 0.40 to 0.80		

0.05 (max.) Phosphorus Sulphur ... 0.05 (max.) 0.80 to 1.10 Chromium 0.15 to 0.25 Molybdenum

0.15 to 0.35 Silicon (b) The complete analysis of each cast of steel shall be supplied by the tube-maker.

2. **Inspection of Blooms.** Every bloom for tube-making shall be visually inspected at each end. Blooms showing pipe shall be rejected or cut back to sound metal.

One of the top end blooms so passed shall be examined by sulphur-printing or deep etching at each end, and if any harmful segregation is revealed each end of each top end bloom in the heat shall be similarly examined.

Blooms showing defects or harmful segregations shall be rejected or shall be further cropped and retested until sound steel is indicated.

3. Heat-Treatment.

- (a) The tubes shall be cold drawn and blued, normalised or hardened and tempered to give the mechanical properties specified in Clause 4 and shall be delivered in this condition.
- (b) The cold drawn and blued tubes shall be blued by being uniformly heated to a temperature between 350° C. and 480° C. and cooling freely in still air.
 - (c) Normalised tubes shall be uniformly heated to a temperature not exceeding 920° C. and cooled freely in air.
 - (d) The hardened and tempered tubes shall be hardened by heating to a temperature not exceeding 900° C, and quenching in oil. They shall then be tempered to give the specified mechanical properties. No tube shall be re-hardened more than twice.
 - 4. Mechanical Properties. Test pieces selected and prepared as specified in Clause 11 shall, without further heat-treatment, comply with the following test requirements:
 - .. Not less than 45 tons per sq. in. (i) Ultimate Tensile Strength (unwelded) . . nor more than 60 tons per sq. in.
 - .. Not less than 35 tons per sq. in. (ii) Ultimate Tensile Strength (welded)* Not less than 40 tons per sq. in.
 - (iii) 0.2% Proof Stress (unwelded)
 - .. See Clause 13. (iv) Flattening Test .. See Clause 14. (v) Proof bend Test
 - .. See Clause 15. (vi) Hardness Test

^{*} The 0.2% proof stress of these tubes after welding may be expected to be not less than 28 tons per sq. in.

5. Manufacture.

- (a) The tubes shall be made from billets rolled from blooms complying with Clause 2. The billets and hollows shall be free from all surface and other defects which might produce defects in the tubes made therefrom.
 - (b) The tubes shall be seamless and cold drawn.
- (c) The tubes shall be straightened before heat-treatment and any subsequent re-straightening shall be performed after the tubes have passed the proof bend test.
- 6. Margins of Manufacture. The dimensions and tolerances of the tubes shall comply with Tables I to VI of this specification except that
 - (a) the limits on the extreme outside diameter shall be either as given in Col. 3 of Table I or $\pm \left(0.005 + \frac{0.6 D^3}{1000 T^2}\right)$ in., whichever is the greater.
 - (b) the dimensions "B" and "C" shall be either as given in Tables II, III, IV and V or +0.010 in., whichever is the greater.

7. Freedom from Defects.

- (a) The tubes shall be free from defects.
- (b) Any tube may be rejected for faults in manufacture, notwithstanding that it has been passed previously for chemical composition and physical properties.
- 8. Straightness. The tubes shall be free from kinks, and straight tubes shall not depart from straightness in any selected length of 20 in. or more by an amount exceeding 1/600th of the length measured.
- 9. Identification. To ensure full identification of the material with its particular cast, with this specification and with the manufacturer
 - (a) Each tube shall be marked at one end with painted identification bands in accordance with the provisions of Australian Standard No. (E)D.500.*
 - (b) Tubes of the same nominal dimensions, manufactured from the same cast and heat-treated together, shall be wired up in bundles to each of which shall be securely attached a tag stamped with the number of this specification ((E)D.539), the cast and heat-treatment batch numbers and the manufacturer's mark.
- 10. Surface Treatment. Unless otherwise specified on the order, the tubes shall be protected against corrosion internally and externally by an approved method.

11. Selection and Preparation of Mechanical Test Samples.

- (a) Tubes of the same nominal dimensions, from the same cast and heat-treated together, shall be grouped in parcels.
- (b) (i) Tensile Test (unwelded). Test samples for tensile testing specified in Clause 4 shall be taken from a tube selected to represent each parcel, if such tubes are proof loaded in accordance with Clause 14 (a). Where tubes are not suitable for proof loading, one tensile test as specified in Clause 4 shall be taken from a tube selected to represent each 400 ft. or less of each parcel.

The test pieces shall be the selected test samples as cut from the tubes, or strips machined therefrom when the size is such as to exceed the capacity of the testing machine.

(ii) Tensile Test (welded, weld not dressed). Two test samples each at least 4 in. long shall be cut from a tube selected to represent all tubes of the same nominal dimensions from the same cast.

The test samples for the tensile test (welded) specified in Clause 4 shall be prepared by butt welding the two samples taken from each selected tube and allowing to cool in air.

The tensile test pieces shall be the welded test samples, or strips machined therefrom when the size is such as to exceed the capacity of the testing machine.

- (c) Flattening Test. A test sample for the flattening test shall be cut from a tube selected from each 100 ft. of each parcel.
 - (d) Test samples shall not be further heat-treated or cold worked before testing.
- (e) Test samples shall be marked in such a way as will positively identify them with the tubes they represent.

12. Tensile Test.

(a) The test pieces† selected and prepared as specified in Clause 11 (b) shall comply with the values given in Clause 4.

The tensile values shall be calculated on the nominal dimensions of the test piece except in the case of a strip cut from the tube, when the actual dimensions shall be measured.

The load shall be applied axially.

^{*} A.S. No. (E)D.500, "Colour Identification of Metallic Materials for Aircraft", in course of preparation. † A suitable test piece is shown in British Standard Specification No. 18.

Proof stress determinations shall be carried out as follows:

- (i) On one test piece from each cast of steel the proof stress shall be obtained from an accurately determined load-elongation diagram, the proof stress being defined as that stress at which the load-elongation curve departs by $0\cdot2\%$ of the gauge length from the straight line of proportionality.
- (ii) On all remaining tensile test pieces proof stress determinations shall be carried out by any approved method.
- (b) Re-tests. If any test piece fails to comply with the tensile test, unwelded, the inspector may reject the tubes represented by that test piece or, at the request of the manufacturer select for test from these tubes two other tubes. One tube shall be that from which the original test sample was taken, unless that tube has been withdrawn by the manufacturer. Test pieces prepared from both these tubes shall comply with the tensile test specified in Clause 4.
- (c) (i) If any test piece fails to comply with the tensile test, welded, other than by failure through the weld at a stress less than 35 tons per sq. in., calculated on the cross-sectional area of the tube, the inspector may reject the complete parcel from which the test piece was selected or, at the request of the manufacturer select for test from the same parcel two tubes. One of the tubes must be that from which the original test samples for welding were taken, unless that tube has been withdrawn by the manufacturer. Two test samples, each at least 4 in. long, shall be cut from each tube, and after welding as specified in Clause 11 (b) (ii) shall comply with the tensile test specified in Clause 4.
- (ii) If any tensile test piece breaks through the weld at a stress less than 35 tons per sq. in. calculated on the cross-sectional area of the tube, the test may be discarded and another welding test made on the same tube.

13. Flattening (or Bending) Test.

- (a) Flattening shall be effected between flat faces by an approved method; a distance piece of the required thickness may be inserted in the tube to limit the degree of flattening.
- (b) Circular Tubes. (i) The test samples selected as specified in Clause 11 shall withstand flattening in the middle over a parallel length of not less than 1 in. without sign of cracking until the greatest distance between the inner sides of the test piece in the direction of flattening is equal to six times the nominal thickness of the tube or three-quarters of the bore, whichever is the smaller. (See Fig. A.)

Fig. A.

(ii) When agreed between the purchaser and the manufacturer, the flattening test may be substituted by a bend test on a strip cut transversely from the selected tube. The test piece shall withstand without sign of cracking being bent into the form of a U over a radius equal to three times the nominal thickness of the tube. (See Fig. B.)

Fig. B.

(c) Square Tubes. The test samples selected as specified in Clause 11 or sections of the tubes cut therefrom, shall withstand without sign of cracking being flattened diagonally until the distance A (Fig. C) equals eight times the original wall thickness of the tube.

Fig. C.

(d) Streamline Tubes. The test samples selected as specified in Clause 11 or sections of the tubes cut therefrom shall withstand without sign of cracking being flattened on the edges until the major axis is reduced by a percentage equal to $\frac{0.6C}{T}$ (see Fig. D). For example, if $\frac{C}{T}$ =80 then the reduction required is 48% of the major axis.

Fig. D.

- (e) Re-tests. If any test piece fails to comply with the flattening (or bending) test the inspector may reject the complete parcel from which that test piece was selected or, at the request of the manufacturer adopt either of the following procedures:
 - (i) Select for test from the same parcel two other samples from each 100 ft. in the parcel. One sample shall be from the tube from which the original test sample was taken, unless that tube has been withdrawn by the manufacturer. All the test pieces prepared from these further test samples shall comply with the flattening (or bending) test specified above.
 - (ii) Allow the parcel to be re-heat-treated in accordance with Clause 3 and re-tested in accordance with Clauses 11, 12 and 13.

14. Proof Bend Test.

(a) One end of each tube shall be subjected by an approved method to the appropriate proof bending moment specified in Col. 7 of Table I. Alternate ends of the tubes in each batch heat-treated together shall be tested.

When the tubes are 10 ft. long and over, 10% of the tubes shall in addition be tested near the middle of their length.

The tube shall be supported at two points in its length and loaded at a third. The supports shall consist of two metal blocks (Fig. 1 (a)) which are grooved to embrace the tube round approximately half its circumference. The diameter of the groove at the centre of the length (L) shall be D+q where D is the nominal outside diameter of the tube and q is $0 \cdot 004$ in. for tubes up to 2 in. diameter and $0 \cdot 001$ in. for each $\frac{1}{2}$ in. diameter for diameters greater than 2 in. The surface of the groove shall have a radius of sixty times the nominal outside diameter of the tube as shown in Fig. 1 (b). The length (L) of the blocks shall not exceed the outside diameter of the tube, and the blocks shall be pivoted at the centre of their length (see Fig. 1 (a)) so as to turn when the tube deflects.

The resulting set shall be determined at a point in the length subjected to bending and near to the point of loading or support and shall be measured with reference to a line through the remaining two points.

The set shall not exceed 5% of the calculated elastic deflection, which shall be based on a bending stress of 40 tons per sq. in., the nominal outside diameter and thickness of the tube and a value for Young's Modulus of 13,300 tons per sq. in.

An approved type of testing machine is described in the Appendix.

(b) Re-tests. If any tube fails to comply with the proof bend test, all the tubes in the same parcel shall be proof bend tested at both ends, and if 10 ft. long and over 20% of the tubes shall in addition be tested near the middle of their length. Tubes which fail to comply with the proof bend test may at the request of the manufacturer be rejected or re-heat-treated in accordance with Clause 3 and re-tested at both ends, and if 10 ft. long and over they shall in addition be tested near the middle of their length.

15. Hardness Test.

- (a) All tubes which cannot be tested on the manufacturer's proof bend testing machine shall be tested for hardness at each end by an approved method, and the hardness numbers shall not be less than 207 nor more than 277 on the Brinell scale or their equivalents on the scale of the method adopted.
- (b) Tubes which fail to pass the hardness test may be rejected or, at the request of the manufacturer be re-heat-treated in accordance with Clause 3 and re-tested in accordance with Clauses 11, 12, 13, 14 and 15.

APPENDIX.

An approved Method of carrying out the Proof Bend Test.

An approved type of testing machine is illustrated in Fig. 2. In this machine a beam is pivoted near one end at C and supported at the other end on a post F. The beam including the fittings at A is balanced about C. The beam is provided with a weight W adjustable in amount and position, so that its moment about C can be given the specified value for the tube under test. (See Col. 7 of Table I.)

One of the grooved metal blocks with its groove facing upward is pivoted immediately above the point C.

At a distance "A" of 10 in. to 20 in. along the beam the second block is pivoted with its groove facing downwards. The tube is inserted between the two blocks and is pressed downwards at some point B until the beam just rises from the supporting block F and is maintained suspended for about 15 seconds. The bending moment in the tube at the point F0 is then equal to the deadweight moment about pivot F0.

The point B at which the load is applied shall be at a fixed distance from C, say 30 in.

To enable heavy tubes to be tested a lever (H) is pivoted on an upward extension of the post at C and extends to any desired distance beyond B. This lever carries a downward projecting arm which presses on the tube at B through the medium of a grooved pulley shaped to take any size of tube (see Fig. 3). This pulley may be of hard wood. It is convenient to over-balance the lever so that the pulley is held clear when the tube is being removed.

After removal of the load the resulting set is measured at a point E between B and C and as close as possible to B.

The apparatus for measuring the set consists of a fairly heavy plunger which is freely guided so that it may move vertically downwards when the tube deflects. One end of a fine cord is attached to the top of the plunger and the other end passes round a spindle carrying a pointer which moves over a graduated dial, thus recording the movements of the plunger on a magnified scale. The cord may be maintained at a definite tension by a small weight or by a spring. (See Fig. 4.)

The elastic deflection is calculated from the following formula:

A and C are the points of support.

B is the point of loading.

E is the point for which the elastic deflection " δ " is calculated and at which the set is measured.

$$\delta = \frac{S}{20,000 \text{ D}} \left(b(a+b) - \frac{X}{2}(3b+2a) + \frac{X^3}{2b} \right)$$

S = 40 tons per sq. in.

D=Nominal outside diameter of the tube in inches.

6

Notes on Table I (pages 9 and 10).

The limits given in the table are derived as follows:

D=Nominal outside diameter of tube in inches.

T=Nominal thickness of tube in inches.

(a) On Mean Inside or Outside Diameter $\begin{cases} \pm \cdot 003 \text{ in. for tubes up to and including } 1\frac{1}{2} \text{ in. diameter.} \\ \pm \cdot 001 \text{ in. for each } \frac{1}{2} \text{ in. (or part thereof) of diameter} \end{cases}$ for tubes over $1\frac{1}{2}$ in. diameter.

(b) On Extreme Outside Diameter - As in (a) above, or $\pm \left\{ \cdot 005 + \frac{0 \cdot 6 \text{ D}^3}{(1000 \text{ T})^2} \right\}$ in., whichever is the greater. Each limit to be taken to the nearest $\cdot 001$ in. under the calculated figure.

Tubes 24 S.W.G. and thinner: -0 + 003 in.

(c) On Mean Thickness - - - $\begin{cases} \text{Tubes thicker than 24 S.W.G. and up to and including} \\ 17 \text{ S.W.G.} : \\ -0 + \cdot 004 \text{ in.} \end{cases}$

Tubes thicker than 17 S.W.G.: -0+8%

The maximum and minimum thicknesses are derived as follows:

(d) Maximum Thickness - - - $(1\cdot1\times \text{Nominal Thickness})$ + Tolerance on Mean Thickness.

(e) Minimum Thickness - - $0.9 \times \text{Nominal Thickness}$.

The proof bending moment M in 1,000 in. lb. is derived from the following formula:

$$\mathbf{M}\!=\!\mathbf{S}\!\times\!\!\frac{\pi(\mathbf{D^4}\!-\!\mathbf{d^4}\!)}{32\ \mathbf{D}}\!\times\!2\cdot\!24$$

Where S=40 tons per sq. in.

D=Nominal outside diameter of tube in inches.

d=Nominal bore of tube in inches (i.e., D less twice nominal thickness).

TABLE I. CIRCULAR TUBES.

(See Notes on Table, page 7.)

													1
3	4	5	6	7	8	2	3	4	5-	6	7	8	
	28 S.V	V.G. (·014	8 in.).					26 S.	W.G. (·018	8 in.).			
Maxim Minim	Mean thicknum thicknum ,,	ess at any	8 in0 9 point ·01 ,, ·01	93 in.				Mean thic num thickn num ,,	ess at any		23 in.		Nomina Outside
neter.						Limits on 1	Diameter.						Diam- eter.
treme tside am- er.*	Nominal Area of Section.	Moment of Inertia.	Modulus of Section.	Proof Bending Moment.	Maximum Weight.†	Mean Outside or Inside Diameter.	Extreme Outside Diam- eter.*	Nominal Area of Section.	Moment of Inertia.	Modulus of Section.	Proof Bending Moment.	Maximum Weight.†	
n. 003	sq. in.	in.4 ·0013	in. ³ · 0042	1000 in. lb. •376	lb. per ft. •116	in. ± · 003	in. ± · 003	sq. in. ·034	in.4 ·0016	in.3 · 0051	1000 in.lb. ·457	lb. per ft. ·136	in.
004 004	· 034 · 040	·0023 ·0037	·0062 ·0085	· 556 · 762	·140 ·163	±·003 ±·003 ±·003	$\begin{array}{l} \pm \cdot 003 \\ \pm \cdot 004 \\ \pm \cdot 004 \end{array}$	·041 ·048 ·056	·0028 ·0045 ·0067	·0074 ·010 ·013	· 663 · 896 1 · 165	·164 ·192 ·220	1 3 4 7 8 1
_	_	_	_	-	_	+1.003	±·005	.063	.0096	.017	1.523	•248	11
												0	1
	4	5	6	7	8	2	3	4	5	6	7	8	
3													
3	22 S.	W.G. (·02	8 in.).					20 S.	W.G. (•03	6 in.).			
Maxin	Mean thic	kness ·028	$\sin \frac{-0}{+\cdot 004}$	35 in.			Maxim Minim	Mean thic	kness · 036	3 in0	44 in.		Outsid
Maxim Minim	Mean thic	kness ·028	3 in0 + · 004 y point · 03	35 in.		Limits on	Maxim Minim	Mean thic	kness · 036	0.00000000000000000000000000000000000	44 in.		Outsid Diam
Maxin Minim	Mean thic	kness ·028	3 in0 + · 004 y point · 03	35 in.	Maximum Weight.†		Maxim Minim Diameter.	Mean thic	kness · 036	0.00000000000000000000000000000000000	44 in.	Maximum Weight.†	Outsid Diam eter.
Maxin Minim neter. rreme tside am- er.*	Mean thickrum ,,,	kness · 028 ness at any "" Moment of	3 in0 + · · 004 7 point · 00 ,, · 00 Modulus of	Proof Bending Moment.		Mean Outside or Inside Diameter.	Maxim Minim Diameter. Extreme Outside Diam-	Mean thickrum ,,,	kness ·036 ness at any "" Moment of	3 in0 + · 004 y point · 0 ,, · 00 Modulus of	Proof Bending Moment.		Outsid Diam eter.
Maxim Minim Meter. reme sside aam- er.*	Mean thicknum thicknum "" Nominal Area of Section. sq. in.	Moment of Inertia.	3 in0 + .004 point .00 .00	Proof Bending Moment.	Weight.†	Mean Outside or Inside Diameter.	Maxim Minim Diameter. Extreme Outside Diam- eter.*	Mean thicknum thicknum ,,, Nominal Area of Section.	kness ·036 ness at any	3 in0 y point ·0 y, ·0 Modulus of Section.	Proof Bending Moment.	Weight.†	Outsic Diam eter.
Maxim Minim meter. reme tside am- er.* n. 003 003 003 003	Nominal Area of Section. sq. in053 .064 .075	Moment of Inertia. in.4 .0023 .0041 .0067	Modulus of Section. in.3 ·0075 ·011 ·015	Proof Bending Moment. 1000 in.1b. 672 986 1.34	lb. per ft	Mean Outside or Inside Diameter. in. ± ·003 ± ·003 ± ·003	Maxim Minim Diameter. Extreme Outside Diameter.* in. ± · 003 ± · 003 ± · 003	Nominal Area of Section. sq. in067 .081 .095	Moment of Inertia.	Modulus of Section. in.3 .0093 .014 .019	Proof Bending Moment. 1000 in lb833 .125 1.70	Weight.† 1b. per ft. 251 304 358	in.
Maxim Minim meter. reme tside am- er.* 003 003 003 004 004 004 005 006	Nominal Area of Section. sq. in053 .064 .075 .086 .096 .107	Moment of Inertia. in.4 ·0023 ·0041 ·0067 ·010 ·015 ·020	Modulus of Section. in.3 ·0075 ·011 ·020 ·026 ·032	Proof Bending Moment. 1000 in. lb672 -986 1 · 34 1 · 79 2 · 33 2 · 87	lb. per ft. · · 203 · · · 246 · · 289 · · 332 · · · 374 · · 417	Mean Outside or Inside Diameter. in. ± ⋅ 003 ± ⋅ 003 ± ⋅ 003 ± ⋅ 003 ± ⋅ 003 ± ⋅ 003	Maxim Minim Diameter. Extreme Outside Diameter.* in. ± ⋅ 003 ± ⋅ 003 ± ⋅ 003 ± ⋅ 003 ± ⋅ 003	Mean thicknum thickrum ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Moment of Inertia. in.4 ·0029 ·0052 ·0084 ·013 ·018 ·025	Modulus of Section. in.3 .0093 .014 .019 .025 .032 .041	Proof Bending Moment. 1000 in lb833 .125 1.70 2.24 2.87 3.67	Weight.† . lb. per ft.	in. \$\frac{3}{4}\frac{4}{7}\frac{3}{8}\$ 1 1\frac{1}{1}\frac{1}{4}
Maxim Minim Minim Maxim Minim	Mean thicknum thicknum "," Nominal Area of Section. sq. in053 .064 .075 .086 .096 .107 .118 .129 .140	Moment of Inertia. in.4	modulus of Section. in.³ ·0075 ·011 ·015 ·020 ·026 ·032 ·039 ·047 ·055	Proof Bending Moment. 1000 in. lb. 672 986 1.34 1.79 2.33 2.87 3.49 4.21 4.93	lb. per ft	Mean Outside or Inside Diameter. in. ± ⋅003 ± ⋅003 ± ⋅003 ± ⋅003 ± ⋅003 ± ⋅003 ± ⋅003 ± ⋅003 ± ⋅003 ± ⋅004	Maxim Minim Diameter. Extreme Outside Diameter.* in. ± ⋅ 003 ± ⋅ 003 ± ⋅ 003 ± ⋅ 003 ± ⋅ 004 ± ⋅ 004 ± ⋅ 004	Mean thicknum thicknum "," Nominal Area of Section. sq. in067 .081 .095 .109 .123 .137 .151 .166 .180	Moment of Inertia. in.4	Modulus of Section. in.3 .0093 .014 .019 .025 .032 .041 .049 .059 .070	Proof Bending Moment. 1000 in lb833 .125 1.70 2.24 2.87 3.67 4.39 5.29 6.27	Weight.† . lb. per ft.	in. \$\frac{5}{8}\$ 1\frac{1}{18}\$ 1\frac{1}{18}\$ 1\frac{1}{18}\$ 1\frac{1}{18}\$ 1\frac{1}{18}\$
Maxim Minim meter. reme tside am- er.* n. 003 003 003 003 003 004 004 005 006 007 008 009 010	Mean thicknum thicknum "" Nominal Area of Section. sq. in053 .064 .075 .086 .096 .107 .118 .129 .140 .151 .162 .173 .184 .195 .206	Moment of Inertia. in.4	modulus of Section. modulus of Section. in.3 .0075 .011 .015 .020 .026 .032 .039 .047 .055 .064 .074 .084	Proof Bending Moment. 1000 in.1b. 672 986 1.34 1.79 2.33 2.87 3.49 4.21 4.93 5.73 6.63 7.53	lb. per ft. · · · 203 · · · 246 · · 289 · · 332 · · · · · · · · · · · · · · · ·	Mean Outside or Inside Diameter. in. ± .003 ± .003 ± .003 ± .003 ± .003 ± .003 ± .004 ± .004 ± .004 ± .004	Maxim Minim Diameter. Extreme Outside Diameter.* in. ± ⋅003 ± ⋅003 ± ⋅003 ± ⋅003 ± ⋅004 ± ⋅004 ± ⋅004 ± ⋅005 ± ⋅006 ± ⋅006	Mean thicknum thicknum "," Nominal Area of Section. sq. in067 .081 .095 .109 .123 .137 .151 .166 .180 .194 .208 .222	Moment of Inertia. in.4 ·0029 ·0052 ·0084 ·013 ·018 ·025 ·034 ·044 ·057 ·071 ·088 ·107	Modulus of Section. in.³ ·0093 ·014 ·019 ·025 ·032 ·041 ·049 ·059 ·070 ·081 ·094 ·107	Proof Bending Moment. 1000 in lb. 833	Weight.† . lb. per ft 251 . 304 . 358 . 411 . 464 . 518 . 5771 . 624 . 6678 . 731 . 785 . 838	in. \$\frac{5}{8}\$ \$\frac{3}{47}\$ \$\frac{4}{78}\$ \$\frac{3}{12}\$ \$\frac{4}{18}\$ \$\frac{1}{12}\$ \$\f
Maxim Minim neter.	Mean thicknum thicknum "" Nominal Area of Section. sq. in053 .064 .075 .086 .096 .107 .118 .129 .140 .151 .162 .173 .184 .195	Moment of Inertia. in.4 ·0023 ·0041 ·0067 ·010 ·015 ·020 ·027 ·035 ·045 ·056 ·069 ·084 ·101 ·121 ·142	modulus of Section. in.3 ·0075 ·011 ·015 ·020 ·026 ·032 ·039 ·047 ·055 ·064 ·074 ·084 ·095 ·107 ·120	Proof Bending Moment. 1000 in. lb672 -986 1.34 1.79 2.33 2.87 3.49 4.21 4.93 5.73 6.63 7.53 8.51 9.59 10.75	lb. per ft	Mean Outside or Inside Diameter.	Maxim Minim Diameter. Extreme Outside Diameter.* in. ± .003 ± .003 ± .003 ± .003 ± .004 ± .004 ± .004 ± .005 ± .006 ± .006 ± .007 ± .008 ± .009	Mean thicknum thicknum ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Moment of Inertia. in.4 ·0029 ·0052 ·0084 ·013 ·018 ·025 ·034 ·044 ·057 ·071 ·088 ·107 ·129 ·153 ·181	Modulus of Section. in.3 · 0093 · 014 · 019 · 025 · 032 · 041 · 049 · 070 · 081 · 107 · 121 · 136 · 152	Proof Bending Moment. 1000 in lb833 .125 1.70 2.24 2.87 3.67 4.39 5.29 6.27 7.26 8.42 9.59 10.84 12.19 13.62	. lb. per ft	in. 58 24478 1 181488 1 1915884 78 2 18 2 2 18 2 2 2 2 2 2 2 2 2 2 2 2 2

ven in Col. 3 above or $+\left\{ \cdot 005 + \frac{D^3}{(1000T)^2} \right\}$ in., whichever is the greater. Each limit to be taken to the nearest $\cdot 001$ in. under the calculated figure.

(continued on next page)

TABLE I.
CIRCULAR TUBES.

(See Notes on Table, page 7.

1	2	3	4	5	6	7	8	2	3	4	5	6
			30 S.V	W.G. (•012	24 in.).					28 S.V	W.G. (·014	18 in.).
Nominal Outside			Mean thic num thickn um ,,		v point ·0	166 in.				Mean thic num thickr	ness at any	
Diam- eter.	Limits on	Diameter.						Limits on	Diameter.			
	Mean Outside or Inside Diameter.	Extreme Outside Diam- eter.*	Nominal Area of Section.	Moment of Inertia.	Modulus of Section.	Proof Bending Moment.	Maximum Weight.†	Mean Out- side or Inside Diameter.	Extreme Outside Diam- eter.*	Nominal Area of Section.	Moment of Inertia.	Modulus of Section.
in. 58	in. ±·003	in. ± · 003	sq. in.	in.4 •0011	in. ³ · 0036	•323	lb. per ft. • 101	in. ± · 003	in. ± · 003	sq. in. •028	in.4 ·0013	in.3 ·0042
34 77 8	=	= -	=	_	=	=	=	±·003 ±·003	±·004 ±·004	· 034 · 040	· 0023 · 0037	· 0062 · 0085
1 1 1 8	_	-		_	_	_	_	_	_	_	_	_
1	2	3	4	5	6	7	8	2	3	4	5	6
			24 S.	W.G. (•02	2 in.).					22 S.	W.G. (·02	8 in.).
Nominal Outside		Maxim Minim	Mean thic num thickn um ,,	kness · 022	point · 02	27 in.		-		Mean thicknum thicknum ,,		point ·03
Diam- eter.	Limits on	Diameter.						Limits on	Diameter.			
	Mean Outside or Inside Diameter.	Extreme Outside Diam- eter.*	Nominal Area of Section.	Moment of Inertia.	Modulus of Section.	Proof Bending Moment.	Maximum Weight.†	Mean Outside or Inside Diameter.	Extreme Outside Diam- eter.*	Nominal Area of Section.	Moment of Inertia.	Modulus of Section.
in.	in. ± · 003	in. ±·003	sq. in. ·042	in.4 ·0019	in. ³	1000 in . lb. • 547	lb. per ft. • 161	in. ± · 003	in. ± · 003	sq. in.	in.4 ·0023	in. ³
3 4 7 8	$\begin{array}{c} \pm \cdot 003 \\ \pm \cdot 003 \\ \pm \cdot 003 \end{array}$	$\begin{array}{c} \pm \cdot 003 \\ \pm \cdot 003 \\ \pm \cdot 004 \end{array}$	·050 ·059 ·068	·0033 ·0054 ·0081	· 0089 · 012 · 016	·797 1·07 1·43	·194 ·228 ·261	$\begin{array}{c} \pm \cdot 003 \\ \pm \cdot 003 \\ \pm \cdot 003 \end{array}$	$\begin{array}{c} \pm \cdot 003 \\ \pm \cdot 003 \\ \pm \cdot 003 \end{array}$	·064 ·075 ·086	·0041 ·0067 ·010	·011 ·015 ·020
1½ 1¼ 1¾ 1¾	±·003 ±·003 ±·003	±·004 ±·005 ±·006	· 076 · 085 · 094	·012 ·016 ·021	· 021 · 026 · 031	$1.88 \\ 2.33 \\ 2.78$	·294 ·328 ·361	±·003 ±·003 ±·003	±·004 ±·004 ±·004	· 096 · 107 · 118	· 015 · 020 · 027	·026 ·032 ·039
$1\frac{1}{2}$ $1\frac{5}{8}$ $1\frac{3}{4}$	±·003 ±·004 ±·004	±·007 ±·008 ±·009	·102 ·111 ·119	·028 ·036 ·045	· 037 · 044 · 051	3·32 3·94 4·57	·394 ·428 ·461	±·003 ±·004 ±·004	±·005 ±·006 ±·007	·129 ·140 ·151	· 035 · 045 · 056	· 047 · 055 · 064
17/8 2 21/8	±·004 ±·004 ±·005	±·011 ±·012 ±·014	·128 ·137 ·145	· 055 · 067 · 080	· 059 · 067 · 076	5·29 6·00 6·81	·495 ·528 ·561	±·004 ±·004 ±·005	±·008 ±·009 ±·010	·162 ·173 ·184	·069 ·084 ·101	· 074 · 084 · 095
2\frac{1}{4} 2\frac{3}{8} 2\frac{1}{2}	±·005 —	±·017 —	·154 	·096 — —	·085 	7.62	·595 — —	±·005 ±·005 ±·005	±·011 ±·013 ±·014	·195 ·206 ·217	·121 ·142 ·166	·107 ·120 ·133
25 23 27 27 8	=	Ξ	Ξ	=	=	_	=	±·006 ±·006	±·016 ±·018	·228 ·239 —	·193 ·222	·147 ·161
3		_			_	_		_	_	_	_	_

^{*} In the case of hardened and tempered tubes the limits on extreme outside diameter shall be as given in Col. 3 above or $+ \left\{ \begin{array}{l} - 005 + \frac{D^3}{(1000T)^3} \\ \end{array} \right\}$

TABLE I.—Continued.

CIRCULAR TUBES.

(See Notes on Table, page 7.)

1	2	3	4	5	6	7	8	2	3	4	5	6	7
			17 S.	W.G. (•050	6 in.).					14 S	.W.G. (•08	30 in.).	
Nominal Outside		Maxim Minim	tum tmcki	kness ·056	bontt . 0	00 III.			Maxin Minin	Mean thicknum thicknum ,	ckness ·08	0 in. -0 y point $\cdot 0$	6 194 in. 172 in.
Diam- eter.	Limits on	Diameter.						Limits on	Diameter.				
	Mean Outside or Inside Diameter.	Extreme Outside Diam- eter.*	Nominal Area of Section.	Moment of Inertia.	Modulus of Section.	Proof Bending Moment.	Maximum Weight.†	Mean Out- side or Inside Diameter.	Extreme Outside Diam- eter.*	Nominal Area of Section.	Moment of Inertia.	Modulus of Section.	Proof Bendin Momen
in.	in. ± · 003	in. ± · 003	sq. in. •100	in.4 ·0041	in.3 ·013	1000 in.lb. 1·16	lb. per ft. • 364	in.	in.	sq. in.	in.4	in.3	1000 in.
3 4 7 8 1	±·003 ±·003 ±·003	$\begin{array}{l} \pm \cdot 003 \\ \pm \cdot 003 \\ \pm \cdot 003 \end{array}$	·122 ·144 ·166	·0074 ·012 ·019	· 020 · 028 · 037	$ \begin{array}{r} 1 \cdot 79 \\ 2 \cdot 51 \\ 3 \cdot 32 \end{array} $	·444 ·524 ·604	±·003 ±·003	±·003 ±·003	·168 ·231	·0096 ·025	·026 — ·049	2·33 — 4·39
1 ½ 1 ½ 1 ¾ 1 ¾	±·003 ±·003 ±·003	±·003 ±·003 ±·003	·188 ·210 ·232	·027 ·038 ·051	· 048 · 060 · 074	4·30 5·38 6·63	·684 ·764 ·844	±·003	±.003	·294 —	.051	-081 -	7.26
$1\frac{1}{2}$ $1\frac{5}{8}$ $1\frac{3}{4}$	±·003 ±·004 ±·004	±·003 ±·004 ±·004	·254 ·276 ·298	·066 ·085 ·107	·088 ·105 ·122	7·88 9·41 10·93	·924 1·004 1·084	±·003 ±·004	±·003 ±·004	·357 ·420	·090 ·147	·120 — ·168	10·75
$\frac{1\frac{7}{8}}{2}$	±·004 ±·004 ±·005	±·004 ±·004 ±·005	·320 ·342 ·364	·132 ·162 ·195	·141 ·162 ·183	12·63 14·52 16·40	1·164 1·244 1·325	±·004	±·004	·483	-223	•223	19.98
2\frac{1}{4} 2\frac{3}{8} 2\frac{1}{2}	±·005 ±·005 ±·005	$\pm .005 \\ \pm .005 \\ \pm .005$	·386 ·408 ·430	·232 ·274 ·321	·207 ·231 ·257	18·55 20·70 23·07	1·405 1·485 1·565	±·005 — ±·005	±·005 — ±·005	·545 — ·608	·321 ·446	·286 — ·357	25·63 31·99
2 5 8 2 3 4 2 7 8	±·006 ±·006 ±·006	±·006 ±·006 ±·007	· 452 · 474 · 496	·373 ·430 ·493	·284 ·313 ·343	25·45 28·04 30·73	1.646 1.726 1.806	±·006	±·006	·671	• 599	•435	38.98
3 3½ 3½ 3¼	±·006 ±·007 ±·007	±·008 ±·008 ±·009	·518 ·540 ·562	· 561 · 636 · 717	· 374 · 407 · 441	33·51 36·47 39·51	1.886 1.966 2.046	±·006 ±·007	±·006 ±·007	·734 ·797	· 783 1 · 001	· 522 · 616	46·77 55·19
3 3 3 3 3 3 3 3 3 5 3 5 8	±·007 ±·007 ±·008	$\begin{array}{c c} \pm \cdot 010 \\ \pm \cdot 011 \\ \pm \cdot 012 \end{array}$	· 584 · 606 · 628	·804 ·899 1·000	·477 ·513 ·552	42·74 45·96 49·46	$2 \cdot 127$ $2 \cdot 207$ $2 \cdot 287$	±·007	±·007	·860 —	1.257	· 7 19	64.42
3 ³ / ₄ 3 ⁷ / ₈ 4	±·008 ±·008 ±·008	$\begin{array}{c} \pm \cdot 013 \\ \pm \cdot 014 \\ \pm \cdot 015 \end{array}$	· 650 · 672 · 694	1·109 1·225 1·349	· 591 · 632 · 675	52·95 56·63 60·48	$2 \cdot 367$ $2 \cdot 447$ $2 \cdot 527$	±·008 ±·008	±·008 ±·009	·922 	1·554 — 1·893	· 829 · 947	74·28 84·85
3 ¹ / ₄ 4 ¹ / ₂ 4 ³ / ₄	_	_	_		=	_	_	±·009 ±·009	±·010 ±·011	1·048 1·111	2·279 2·714	1·072 1·206	96·05 108·06
5	_	_	_	_	_	_	_			_	_		_

^{*} In the case of hardened and tempered tubes the limits on extreme outside diameter shall be as given in Col. 3 above or $+ \left\{ \cdot 005 + \frac{D^3}{(1000T)^2} \right\}$ in., where $+ \left\{ \cdot 005 + \frac{D^3}{(1000T)^2} \right\}$ in., where $+ \left\{ \cdot 005 + \frac{D^3}{(1000T)^2} \right\}$ in.

TABLE I.—Continued.

CIRCULAR TUBES.

(See Notes on Table, page 7.)

3	4	5	6	7	8	2	3	4	5	6	7	8	, 1
	14 S.	W.G. (·08	0 in.).				*	11 S.	W.G. (·11)	6 in.).			
Maxim Minim	Mean thicknum ,,	kness ·080	point of	7 111.			Maxin Minim	um thickn	kness ·116	point ·1:	37 in.		Nominal Outside
ameter.						Limits on	Diameter.						Diam- eter.
Extreme Outside Diam- eter.*	Nominal Area of Section.	Moment of Inertia.	Modulus of Section.	Proof Bending Moment.	Maximum Weight.†	Mean Outside or Inside Diameter.	Extreme Outside Diam- eter.*	Nominal Area of Section.	Moment of Inertia.	Modulus of Section.	Proof Bending Moment.	Maximum Weight.†	
in.	sq. in.	in.4	in.3	1000 in. lb.	lb. per ft.	in.	in. —	sq. in.	in.4	in.3	1000 in.lb.	lb. per ft.	in.
± ⋅ 003	·168	.0096	•026	2.33	-612	-		_	_		_	_	3 4 7 8
± · 003	•231	.025	•049	4.39	-841	±·003	±·003	•322	.032	.064	5.73	1.171	18
±.003	• 294	• 051	·081	7.26	1.071	±.003	± <u>·0</u> 03	•413	• 067	•107	9.59	1.504	$1\frac{1}{8}$ $1\frac{1}{4}$ $1\frac{3}{8}$
± · 003	·357	• 090	·120	10.75	1.300	±·003	$\pm \cdot 003$	•504	·122	·162	14.52	1.838	$1\frac{1}{2}$ $1\frac{5}{8}$ $1\frac{3}{4}$
±·004	•420	•147	·168	15.05	1.530	±·004	±·004	• 595	•200	.228	20.43	2 · 172	13/4
 ± · 004 	- ·483 -	• 223	·223	19.98	1.760	±.004	±.004	·687	306	.306	27.42	2.506	17/8 2 21/8
± · 005	•545	•321	•286	25 · 63	1.990	± · 005	± · 005	.778	•444	•395	35 · 39	2.841	$egin{array}{c} {\bf 2} rac{1}{4} \ {\bf 2} rac{3}{8} \ {\bf 2} rac{1}{2} \end{array}$
±·005	-608	•446	•357	31.99	2.219	±·005	±·005	-869	-619	•495	44.35	3 · 174	
 ± · 006 	• 671	• 599	435	38.98	· 2·450	±·006	±.006	-960 -	-834	·607	54.39	3.509	25 23 27 27 8
± · 006	.734	.783	• 522	46.77	2.679	±·006	±·006	1.051	1.094	•730	65 · 41	3.842	3 3½
± · 007	.797	1.001	•616	55.19	2.909	±·007	±·007	1.142	1.404	.864	77 · 41	4.177	31/4
 	860	1.257	·719	64.42	3·139 —	±.007	±-007	1.233	1.767	1.010	90.50	4.510	3 ½ 3 ½ 3 ½ 3 ½ 3 ½ 5 %
⊢ ⋅ 008	.922	1.554	· 829	74.28	3 · 369	±·008	±·008	1.324	2 · 188	1.167	104.56	4.845	33 37 37
F·009	•985	1.893	•947	84.85	3.599	±·008	±·008	1.415	2.671	1.336	119.71	5 · 178	4
±·010 ±·011 —	1·048 1·111	2·279 2·714	1·072 1·206	96·05 108·06	3·829 4·058	±·009 ±·009 ±·010	$\begin{array}{l} \pm \cdot 009 \\ \pm \cdot 009 \\ \pm \cdot 010 \end{array}$	1.507 1.598 1.689	$3 \cdot 221 \\ 3 \cdot 841 \\ 4 \cdot 536$	1.516 1.707 1.910	$135 \cdot 83$ $152 \cdot 95$ $171 \cdot 14$	5·513 5·847 6·181	41 41 42 43
_	_	_	_	_	<u>-</u>	±·010	±·010	1.780	5.310	2 · 124	190.31	6.515	5
			D3						ı				

iven in Col. 3 above or $+\left\{ \cdot 005 + \frac{D^3}{(1000T)^2} \right\}$ in., whichever is the greater. Each limit to be taken to the nearest $\cdot 001$ in. under the calculated figure. The given for the information of designers and not for purposes of inspection.

TABLE II.

SQUARE TUBES.

A=Nom. Sectional Area.

I = Moment of Inertia.

Z=Modulus of Section.

k = Radius of Gyration.

W=Maximum Weight per ft.

Nominal Di	mensions.			Nom	inal Thickn	ess of Tube	(T).	
Width. B ±0.5%	Ext. Rad.		24 S.W.G. (•022 in.).	22 S.W.G. (•028 in.).	20 S.W.G. (•036 in.).	17 S.W.G. (·056 in.).	14 S.W.G. (·080 in.).	11 S.W.G. (·116 in.)
(See foot- note, page 12)		Mean thickness in.	$022^{-0}_{+\cdot 003}$	$-0.028^{-0}_{+\cdot 004}$	036^{-0}_{+004}	$0.056^{-0}_{+0.004}$	$-080^{-0}_{+\cdot 006}$	_
in.	in.	Max. thickness at any point in.	.027	.035	•044	.066	.094	
		Min. thickness at any point in.	•020	.025	.032	•050	.072	-
0·250 (E.D.*=0	0·050 ·291 in.)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	·019 ·00015 ·0012 ·091 ·072	·023 ·00018 ·0015 ·089 ·089				
0·375 (E.D. = 0·	0·075 436 in.)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	·029 ·00056 ·0030 ·140 ·111	·036 ·00069 ·0037 ·138 ·139	·045 ·00083 ·0044 ·135 ·170	<u>-</u>		
0·500 (E.D.=0·	0·100 ·582 in.)	A in.² I in.⁴ Z in.³ k in. W lb. per ft.	·039 ·0014 ·0056 ·190 ·149	· 049 · 0017 · 0068 · 187 · 189	· 062 · 0021 · 0084 · 185 · 233	=		
0·625 (E.D.=0·	0·125 727 in.)	A in.² I in.⁴ Z in.³ k in. W lb. per ft.		· 062 · 0034 · 011 · 237 · 238	· 078 · 0043 · 014 · 234 · 295	·118 ·0061 ·019 ·227 ·429		
0 · 750 (E.D. = 0 ·	0·150 873 in.)	A in.² I in.⁴ Z in.s k in. W lb. per ft.	=	· 074 · 0061 · 016 · 286 · 288	· 095 · 0076 · 020 · 283 · 357	·144 ·011 ·029 ·276 ·522		=
0 ⋅875 (E.D.=1⋅	0·175 018 in.)	A in. ² I in. ⁴ Z in. ³ k in. W lb. per ft.	= -		·111 ·012 ·028 ·333 ·419	·169 ·018 ·041 ·326 ·615	· 236 · 024 · 054 · 317 · 858	
1·000 (E.D.=1·	0·200 164 in.)	A in. ² I in. ⁴ Z in. ⁸ k in. W lb. per ft.			·128 ·019 ·037 ·382 ·481	·195 ·027 ·055 ·375 ·709	· 272 · 037 · 073 · 367 · 992	=
1·125 (E.D.=1·	0·200 323 in.)	A in. ² I in. ⁴ Z in. ³ k in. W lb. per ft.	=		·146 ·027 ·049 ·434 ·549	· 223 · 040 · 072 · 426 · 810	·312 ·055 ·097 ·418 1·138	=

TABLE II.—(continued.)

SQUARE TUBES.

Nominal D	imensions.				Nom	inal Thickn	ess of Tube	(T).	
Width. B ±0.5%	Ext. Rad.			24 S.W.G. (•022 in.).	22 S.W.G. (•028 in.).	20 S.W.G. (·036 in.).	17 S.W.G. (·056 in.).	14 S.W.G. (·080 in.).	11 S.W.G. (·116 in.)
(See footnote.)		Mean thickness	in.			* - · · ·	·056 ⁻⁰ +·004	·080 ⁺ ·006	·116 ⁺ ·00
in.	in.	Max. thickness at any point	in.		_		.066	.094	·137
		Min. thickness at any point	in.		_	-	• 050	.072	·104
1·250 (E.D.*=	0·200 1·482 in.)	A I Z Z k W lb. p	in.² in.⁴ in.³ in. er ft.		=		· 251 · 058 · 093 · 482 · 912	·352 ·078 ·124 ·469 1·284	
1·375 (E.D.=1	0·200 ·641 in.)	A I Z k W lb. p	in.² in.⁴ in.³ in. er ft.			=	· 279 · 078 · 113 · 529 1· 015	· 392 · 106 · 154 · 520 1· 431	· 556 · 143 · 208 · 508 2 · 028
1·500 (E.D.=1	0·230 ·784 in.)	A I Z k W lb. p	in. ² in. ⁴ in. ³ in. er ft.		Tables of the state of the stat		·304 ·102 ·135 ·578 1·106	·428 ·139 ·185 ·569 1·562	·608 ·188 ·251 ·557 2·218
1·750 (E.D.=2	0·260 3·086 in.)	A I Z Z k W lb. p	in. ² in. ⁴ in. ³ in. er ft.				· 357 · 164 · 188 · 678 1 · 300	·504 ·226 ·258 ·669 1·840	·718 ·310 ·354 ·657 2·622
2·000 (E.D.=2	0·300 ·383 in.)	A I Z k W lb. p	in. ² in. ⁴ in. ³ in. per ft.					·579 ·342 ·342 ·769 2·112	· 826 · 472 · 472 · 756 3 · 017
2·250 (E.D.=2	0·340 2·679 in.)	A I Z k W lb. 1	in. ² in. ⁴ in. ³ in. per ft.				_	·653 ·493 ·438 ·869 2·385	· 934 · 684 · 608 · 856 3 · 414
2·500	0·380	A I Z k W lb. r	in. ² in. ⁴ in. ³ in. oer ft.					·728 ·682 ·546 ·968 2·657	1·042 ·951 ·761 ·955 3·809

^{*} E.D.=Equivalent Outside Diameter of Circular Tube.

Note.—The limits specified for the width **B** shall not apply within 6 inches of the cut ends and in no case shall they be less than those specified for the extreme outside diameter of a circular tube of the same nominal thickness and of a nominal diameter equal to the width **B**.

The figures for the Maximum Weights and for the Equivalent Outside Diameters of Circular Tubes are given for information of designers and not for purposes of inspection.

TABLE III.

STREAMLINE TUBES.

FINENESS RATIO 2:1.

Nominal I	Dimensions.				Nom	inal Thickn	ess of Tube	(T).	
Length. C ±0.5%	Breadth. B ±1.0%			24 S.W.G. (·022 in.).	22 S.W.G. (·028 in.).	20 S.W.G. (·036 in.).	17 S.W.G. (·056 in.).	14 S.W.G. (·080 in.).	11 S.W.Ğ. (•116 in.)
See footno	te, page 14.)	Mean thickness	in.	$-022^{-0}_{+\cdot 003}$	$-028^{-0}_{+\cdot 004}$	$-036^{-0}_{+\cdot 004}$	$-056^{-0}_{+\cdot 004}$	-080^{-0}_{+006}	
in.	in.	Max. thickness at any 1	point in.	.027	.035	.044	.066	.094	_
		Min. thickness at any p	ooint in.	.020	.025	.032	.050	.072	_
1·0 (E.D.*=	0·50 0·770 in.)	A Iyy Zyy <i>kyy</i> W	in.² in.4 in.3 in. lb. per ft.	· 052 · 0017 · 0066 · 179 · 200	=	· 083 · 0025 · 010 · 174 · 313		=	
1·5 (E.D.=1	0·75 ·156 in.)	A Iyy Zyy kyy W	in.² in.⁴ in.³ in. lb. per ft.		· 099 · 0072 · 019 · 270 · 385		·193 ·013 ·035 ·260 ·703	_	
2·0 (E.D.=1	1·00 ·541 in.)	A Iyy Zyy kyy W	in.² in.⁴ in.³ in. lb. per ft.		· 133 · 018 · 035 · 363 · 517		· 261 · 033 · 065 · 353 · 951	=	
2·5 (E.D.=1	1·25 ·926 in.)	A Iyy Zyy kyy W	in.² in.4 in.3 in. lb. per ft.		·167 ·035 ·056 ·457 ·648		·329 ·066 ·105 ·446 1·197		
3·0 (E.D.=2	1·50 ·311 in.)	A Iyy Zyy kyy W	in.² in.4 in.3 in. lb. per ft.	-	-	· 257 · 077 · 103 · 547 · 971		·561 ·158 ·211 ·531 2·046	
3·5 (E.D.=2	1·75 ·697 in.)	A Lyy Zyy kyy W	in.2 in.4 in.3 in. lb. per ft.			· 301 · 123 · 141 · 641 1 · 136	-	· 658 · 256 · 293 · 624 2 · 401	_

TABLE III.—(continued.)

STREAMLINE TUBES.

FINENESS RATIO 2:1.

Nominal I	Dimensions.				Nom	inal Thickn	ess of Tube	(T).	
Length. C ±0.5%	Breadth. B ±1.0%			24 S.W.G. (·022 in.).	22 S.W.G. (·028 in.).	20 S.W.G. (·036 in.).	17 S.W.G. (·056 in.).	14 S.W.G. (•080 in.).	11 S.W.G. (·116 in.)
(See fo	otnote.)	Mean thickness	in.		_	_	$-056^{-0}_{+\cdot 004}$	_	·116 ⁺ ·00
in.	in.	Max. thickness at any point	in.	_		_	•066	-	· 137
		Min. thickness at any point	in.			-	.050	_	·104
4·0 (E.D.*=	2·0 3·082 in.)	A Iyy Zyy kyy W lb. pe	in. ² in. ⁴ in. ³ in. er ft.			, <u>-</u>	·532 ·281 ·281 ·727 1·939	=	1·081 ·537 ·537 ·705 3·953
4·5 (E.D.=3	2·25 3·467 in.)	A Iyy Zyy kyy W lb. pe	in. ² in. ⁴ in. ³ in. er ft.			=	·600 ·403 ·359 ·820 2·185	= =	1·221 ·778 ·691 ·798 4·466
5·0 (E.D.=3	2·5 3·852 in.)	A Iyy Zyy kyy W lb. pe	in.² in.⁴ in.³ in. er ft.		-	=	·668 ·557 ·446 ·913 2·433		1·362 1·082 ·866 ·891 4·981

^{*} E.D.=Equivalent Outside Diameter of Circular Tube.

Note.—The limits specified for the length ${\bf C}$ and the breadth ${\bf B}$ shall not apply within 6 inches of the cut ends and in no case shall they be less than those specified for the extreme outside diameter of a circular tube of the same nominal thickness and of a nominal diameter equal to the length ${\bf C}$.

The figures for the Maximum Weights and Equivalent Outside Diameters of Circular Tubes are given for information of designers and not for purposes of inspection.

TABLE IV.

STREAMLINE TUBES.

Fineness Ratio $2\frac{1}{2}:1$.

Nominal D	Dimensions.				Nom	inal Thickn	ess of Tube	(T).	
Length. C ±0.5%	Breadth. B ±1.0%			24 S.W.G. (•022 in.).	22 S.W.G. (·028 in.).	20 S.W.G. (·036 in.).	17 S.W.G. (•056 in.).	14 S.W.G. (•080 in.).	11 S.W.G. (·116 in.).
(See footnot	te, page 16.)	Mean thickness	in.	$-022^{-0}_{+\cdot 003}$	$-028^{-0}_{+\cdot 004}$	036^{-0}_{+004}	$-056^{-0}_{+\cdot 004}$	era <u>era e</u> ra da das	
in.	in.	Max. thickness at any p	oint in.	.027	.035	.044	·066	_	
		Min. thickness at any po	oint in.	-020	.025	.032	.050		
1·00 (E.D.*=0	0·40 0·734 in.)	A Iyy Zyy kyy W 1	in.² in.⁴ in.³ in. b. per ft.	·049 ·0010 ·0051 ·144 ·190	· 062 · 0013 · 0063 · 142 · 241				
1·25 (E.D.=0	0·50 ·918 in.)	A Iyy Zyy kyy W 1	in.² in.4 in.3 in. b. per ft.	·062 ·0021 ·0082 ·182 ·239	·078 ·0025 ·010 ·180 ·304	·100 ·0031 ·013 ·177 ·376	_		Ē
1·50 (E.D.=1	0·60 ·102 in.)	A Iyy Zyy kyy W 1	in.² in.4 in.3 in. b. per ft.		· 094 · 0045 · 015 · 218 · 366	·121 ·0056 ·019 ·215 ·454			=
1·75 (E.D.=1	0·70 ·285 in.)	A Iyy Zyy kyy W 1	in.² in.4 in.3 in. b. per ft.		·111 ·0073 ·021 ·256 ·429	·141 ·0091 ·026 ·253 ·533			= -
2·00 (E.D.=1·	0·80 ·469 in.)	A Lyy Zyy kyy W 1	in.² in.4 in.3 in. b. per ft.		· 127 · 011 · 027 · 294 · 492	·162 ·014 ·034 ·291 ·611	· 249 · 020 · 050 · 284 · 904		=

^{*} E.D.=Equivalent Outside Diameter of Circular Tube.

TABLE IV.—Continued.

STREAMLINE TUBES.

Fineness Ratio $2\frac{1}{2}$:1.

Nominal D	imensions.				Nomi	nal Thickne	ess of Tube	(T).	
Length. C ±0.5%	Breadth. B ±1.0%			24 S.W.G. (•022 in.).	22 S.W.G. (·028 in.).	20 S.W.G. (•036 in.).	17 S.W.G. (·056 in.).	14 S.W.G. (•080 in.).	S.W.G. (·116 in.).
(See fo	otnote.)	Mean thickness	in.	_	$-028^{-0}_{+\cdot 004}$	$0.036^{-0}_{+0.004}$	$0.056^{-0}_{+0.004}$	$0.080^{-0}_{+0.006}$	$\cdot 116^{-0}_{+\cdot 00}$
in.	in.	Max. thickness at any po	oint in.	-	• 035	.044	.066	•094	·137
		Min. thickness at any po	int in.	_	. 025	.032	.050	-072	·104
2·25	0·90 1·652 in.)	A Lyy Zyy kyy W 1	in.² in.⁴ in.³ in. b. per ft.	=	·143 ·016 ·035 ·333 ·555	·183 ·020 ·044 ·330 ·690	· 281 · 029 · 065 · 322 1 · 022	= = = = = = = = = = = = = = = = = = = =	=======================================
2.5	1·00 1·836 in.)	A Iyy Zyy kvy	in.² in.⁴ in.³ in.		· 159 · 022 · 044 · 371 · 617	·204 ·028 ·055 ·368 ·768	·313 ·041 ·081 ·360 1·139	y, 4	
3.0	1·20 2·203 in.)	A Iyy Zyy kyy W	in.² in.⁴ in.³ in.			· 245 · 048 · 081 · 444 · 925	· 378 · 072 · 120 · 436 1 · 375	·534 ·098 ·163 ·428 1·947	=
3.5	1·40 2·570 in.)	A Iyy Zyy kyy W	in.² in.4 in.3 in. lb. per ft.			· 287 · 078 · 111 · 520 1 · 082	·442 ·116 ·166 ·513 1·611	$egin{array}{c} \cdot 626 \\ \cdot 159 \\ \cdot 227 \\ \cdot 504 \\ 2 \cdot 285 \\ \end{array}$	
4.0	1·60 2·938 in.)	A Iyy Zyy kyy W	in.² in.⁴ in.³ in. lb. per ft.	= 1	= 1	·328 ·117 ·146 ·597 1·239	·507 ·176 ·220 ·589 1·846	·718 ·242 ·302 ·580 2·622	1.028 $.330$ $.413$ $.567$ 3.759
4.5	1·80 3·305 in.)	A Iyy Zyy kyy W	in.² in.⁴ in.³ in. lb. per ft.	_			· 572 · 253 · 281 · 665 2 · 082	·810 ·349 ·388 ·656 2·960	1·162 ·480 ·533 ·643 4·250
5.0	2·00 3·672 in.)	A Iyy Zyy kyy W	in. ² in. ⁴ in. ³ in. lb. per ft.	_			·636 ·350 ·350 ·742 2·317	· 903 · 484 · 484 · 732 3 · 297	1·296 ·670 ·670 ·719 4·741
5.5	2·20 4·039 in.)	A · Iyy Zyy kyy W	in. ² in. ⁴ in. ³ in. lb. per ft.				·701 ·469 ·426 ·818 2·553	· 995 · 651 · 592 · 809 3 · 635	1·430 ·904 ·822 ·795 5·232

^{*} E.D. = Equivalent Outside Diameter of Circular Tube.

Note.—The limits specified for the length \mathbf{C} and the breadth \mathbf{B} shall not apply within 6 inches of the cut ends and in no case shall they be less than those specified for the extreme outside diameter of a circular tube of the same nominal thickness and of a nominal diameter equal to the length \mathbf{C} .

The figures for the Maximum Weights and Equivalent Outside Diameters of Circular Tubes are given for information of designers and not for purposes of inspection.

17 TABLE V.

STREAMLINE TUBES.

FINENESS RATIO 3:1.

Nominal Dimensions.			Nominal Thickness of Tube (T).				
Length. C ±0.5%	Breadth. \mathbf{B} $\pm 1 \cdot 0 \%$		22 S.W.G. (•028 in.).	20 S.W.G. (·036 in.).	17 S.W.G. (·056 in.).	14 S.W.G. (•080 in.).	11 S.W.G. (·116 in.)
(See foo	otnote.)	Mean thickness in.	$-028^{-0}_{+\cdot 004}$	$-036^{-0}_{+\cdot 004}$	$-056^{-0}_{+\cdot 004}$	·080 ⁺ ·006	·116 ⁻⁰
in.	in.	Max. thickness at any point in.	.035	. 044	-066	.094	·137
		Min. thickness at any point in.	.025	.032	.050	.072	·104
1·5 (E.D.*=	0·50 1·069 in.)	A in.² Iyy in.⁴ Zyy in.³ kyy in. W lb. per ft.	· 092 · 0030 · 012 · 182 · 355		=		
2·25 (E.D.=1	0·75 ·604 in.)	A in.² Iyy in.⁴ Zyy in.³ kyy in. W lb. per ft.	·139 ·011 ·029 ·279 ·538		·272 ·019 ·052 ·267 ·991		
$3 \cdot 0$ $(E.D. = 2)$	1·00 ·138 in.)	A in.2 Iyy in.4 Zyy in.3 kyy in. W lb. per ft.	=	·238 ·033 ·066 ·372 ·898			=
3·75 (E.D.=2	1·25 ·673 in.)	A in.² Iyy in.⁴ Zyy in.³ kyy in. W lb. per ft.	<u>-</u>	·298 ·065 ·105 ·469 1·126		$ \begin{array}{r} \cdot 652 \\ \cdot 133 \\ \cdot 213 \\ \cdot 452 \\ 2 \cdot 379 \end{array} $	
4·5 (E.D.=3	1·50 ·208 in.)	$\begin{array}{ccc} A & & \text{in.}^2 \\ \text{Lyy} & & \text{in.}^4 \\ \text{Zyy} & & \text{in.}^3 \\ kyy & & \text{in.} \\ W & & \text{lb. per ft.} \end{array}$			· 554 · 172 · 229 · 557 2 · 019		
5·25 (E.D.=3	1·75 ·742 in.)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			· 649 · 277 · 317 · 654 2 · 362		1·321 ·526 ·601 ·631 4·835

^{*} E.D. = Equivalent Outside Diameter of Circular Tube.

Note.—The limits specified for the length **C** and the breadth **B** shall not apply within 6 inches of the cut ends and in no case shall they be less than those specified for the extreme outside diameter of a circular tube of the same nominal thickness and of a nominal diameter equal to the length **C**.

The figures for the Maximum Weights and Equivalent Outside Diameters of Circular Tubes are given for information of designers and not for purposes of inspection.

TABLE VI.

AEROFOIL EDGE TUBES.

1 INCH AEROFOIL EDGE.

Nominal Thickness.	22 S.W.G. (·028 in.).		
Nominal Sectional Area		.032 in.2	
Moment of Inertia about XX		·00075 in.4	
Moment of Inertia about YY		·00022 in.4	
Modulus of Section about XX		·0029 in.3	
Modulus of Section about YY		·0018 in.3	
* Maximum Weight		·123 lb. per ft.	

9 INCH AEROFOIL EDGE.

Nominal Thickness.	22 S.W.G. (·028 in.).		
Nominal Sectional Area	·037 in.²		
Moment of Inertia about XX	·0012 in.4		
Moment of Inertia about YY	·0043 in.4		
Modulus of Section about XX	·0040 in.3		
Modulus of Section about YY	·0027 in.3		
* Maximum Weight	·144 lb. per ft.		

^{*} The figures for the Maximum Weights are given for information of designers and not for purposes of inspection.

For the purposes of this specification as an Australian standard the term "Inspector" shall be interpreted in the manner directed by the Australian Airworthiness Authority concerned.

This specification, prepared by the Special Committee on Aircraft Materials and Components, was approved on behalf of the Council of the Association on 4th September, 1941.

In order to keep abreast of progress in the industries concerned, Australian standards are subject to periodical review. Suggestions for improvement, addressed to the Headquarters of the Association, will be welcomed.