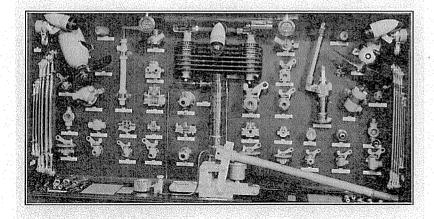
MATRICE AFT ACCESSORIES


VICKERS (AVIATION) LIMITED WEYERIDGE, SURREY.

Aircraft Accessories

SECOND EDITION

A Typical Selection of Vickers Aircraft Accessories

To save weight, where possible, Duralumin is used protected against corrosion by the Anodic Process. Steel parts, where they are not made of the Rustless variety, are Cadmium coated.

VICKERS ACCESSORIES FOR AIRCRAFT

VICKERS (AVIATION) LIMITED

BYFLEET ROAD, WEYBRIDGE, SURREY

Telephone: BYFLEET 240

Telegrams: VICKERS, WEYBRIDGE

A NOTE ON ACCESSORIES

O man with experience of aviation is content to employ accessories that have not been designed, made for, and tested in aircraft. He is not satisfied to fit cheap, shoddy equipment not proven in flight.

The risks are too big for him; the consequences too grave.

Be wise, therefore. Learn from his experience. Use only those accessories that are skilfully and carefully made, and warranted by use over a long period of flying. They are the only ones worthy of your consideration.

CONTENTS:

			Pages.
Vickers Hydraulic Wheel Brakes			6 to 14
Vickers Fuel, Oil and Water Systems (Cocks, Value	zes, Fil	ters,	
Pumps, Pipe Clips, etc.)			15 to 45
Vickers Metal Couplings for Fuel Pipes			46 to 51
Vickers Universal Pulleys and Guards			52
Vickers Oleo-pneumatic Shock Absorbers			53 to 64
Vickers High Pressure Air Pumps			65, 66
Vickers Non-return Valve for Compressed Air M	ains		67
Vickers Air Compressor for Engine Starting			68, 69
Vickers-Potts Oil Cooler			70 to 78
Vickers Centralised Bomb Release Controls			79 to 82
Streamline Wires	•		83 to 102
Swaged Tierods			103 to 115
Fork Joints			117 to 119
Pins			120 to 126
Useful Tables (See index on page 127)			127 to 184
Detailed Index	•		185 to 188

VICKERS HYDRAULIC WHEEL BRAKES FOR AIRCRAFT

(Patent Applied for).

THE NECESSITY FOR BRAKES ON AIRCRAFT.

The airplane is the only high speed transport vehicle not generally fitted with brakes. The distance which an airplane runs on landing before finally coming to rest is therefore unnecessarily long.

Without brakes, the machine on landing may become unmanageable on sloping ground, and is also at the mercy of adverse winds.

Landings during night flying and under emergencies would be rendered safer if

The adoption of wheel brakes gives advantages which may be summarized as follows:

Makes the machine safer on the ground.

Permits the use of tail wheels, lessens the wear and tear of aerodromes and reduces the number of ground personnel.

Permits the use of roller bearing wheels, which reduces upkeep costs and shortens the run to "take-off."

Enables the machine to land and pull up in a smaller field.

Braked run may be 50 per cent of unbraked run.

Gives to single engine machine the manœuvrability of a twin,

Lessens the stresses in tail portion of fuselage owing to the abolition of tail skid.

Finally the use of brakes enables higher landing speeds to be safely employed, with the consequent increase in top speed and efficiency.

THE REQUIREMENTS OF THE IDEAL BRAKING SYSTEM.

Various schemes of braking have been tried in the past, but experiments show that the best system consists of hand-applied brakes over which the pilot has full control.

In this case it is essential that the brakes instantly respond to the load applied to the hand lever; this necessitates a direct connection between the hand lever and the brake shoe.

It is also of the utmost importance that there should be instantaneous release.

In modern aircraft, owing to the motion of the sprung landing wheels and the distance which separates the wheel from the pilot, any system of wire control or tensions rods and bell cranks with all the necessary compensating gear must be very inefficient and thus increase the load on the pilot's brake lever. There is an additional objection to the use of such transmission; any distortion of the machine framework may render the application of the brakes uncertain.

THE SOLUTION: "THE VICKERS HYDRAULIC BRAKES."

The only solution of these difficulties is to adopt the hydraulic system of transmission

After several years spent in experiments on these lines, Vickers (Aviation) Ltd., have now perfected the system so that the pilot can by his own unaided efforts apply the brakes to a machine weighing 18,000 lbs., and bring same to rest in less than 100 vards, when landing at 45 m.p.h.

Although the hydraulic system is not new, its many advantages make it the ideal transmission and the following are its chief features:

High efficiency with any mechanical ratio.

Automatic compensation.

Self lubrication.

Adaptability.

Ease of installation and maintenance.

CHOICE OF TYPES.

Vickers (Aviation) Limited have developed two types :-

- (a) Compensated Brakes.
- (b) Steerable Brakes.

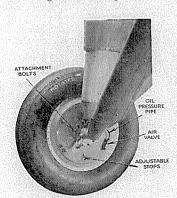
The components comprising the (a) type are:	Weight
One Pilot's Control	4·25 lbs.
One Oil Reservoir	0·50 lbs.
The necessary transmission Pipe Line with June Couplings	unctions and 0·10 lbs. per foot run.
One or two Right-hand Wheel Brake Units	See table on page 11.
One or two Left-hand Wheel Brake Units	See table on page 11.

The (b) is similar to above with the addition of one Steering Valve. . 1.75 lbs.

DETAILS OF THE APPARATUS AND ITS OPERATION.

The Vickers improved 1930 type Hydraulic Wheel Brake is similar to that described in the 1929 edition of the catalogue of Vickers Accessories for Aircraft, but various improvements have been made in the use of ultra light alloys to reduce weight.

The Wheel Brake Unit is still of the Servo type. The three shoes, the actuating motor and take off springs are all mounted between two torque plates. The torque plate is simply secured to a flange on the axle by a number of bolts.


One of the chief advantages of the Vickers hydraulic system and the patented controller is that the adjustment of the shoes for wear is not of vital importance. Neglect to make this adjustment will not in any way affect the efficiency of the brakes. However, three adjustable stops are fitted at the shoes to take up wear, and to reduce clearances and consequently the number of strokes of the pump (controller) necessary for their initial application. This adjustment can be carried out without dismantling anything.

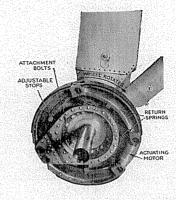
The table of brake sizes given on page 10 cancels and replaces that given on page 14 of the 1929 catalogue.

The action of the various components is as follows:

The Pilot's Control is operated as a pump and raises the pressure of the oil in the system.

The first stroke takes up all clearances and the second stroke gives maximum braking. If the brake shoe linings are worn and if this wear has not been taken up by the adjustments provided, it may be necessary to increase the number of the preliminary strokes before full braking can be obtained. But once the shoes have been brought into rubbing contact with the drum, they will remain in this position

until they are released by the forcible movement of the handlever to the extreme forward position. Having brought the shoes into slight rubbing contact with drums (an operation which may quite safely be carried out before landing as the special non-return valve incorporated in the pump prevents excessive load being applied), the lever is then returned to its forward position in readiness for final braking when the action is exactly similar to a mechanical brake.


During the final pull, the handlever is in direct communication with brake shoes through an uninterrupted column of oil which transmits the pilot's effort with a minimum of loss. This high efficiency makes the brakes very sensitive and enables them to respond immediately to the pilot's demand. The oil column can be split up between two or four wheels

with perfect equalization, and the problem of steerable brakes is met by the insertion of a rudder controlled distribution valve between the pilot's control and the right and left brake groups, without in any way reducing their efficiency.

The Oil Reservoir is a simple container with a filler cap, a gauze and the necessary connections. It can be mounted in any convenient position close to and above the pilot's control. The oil recommended is Vacuum Oil Co.'s P.924 which is a thin non-freezing oil (known as Machine Gun Oil). Any thin non-freezing oil of similar characteristics may be used.

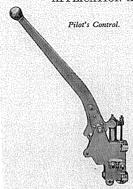
The transmission pipe line connecting the pilot's control with the Brake Motors is of solid drawn steel and of small diameter. This pipe may be installed in the

machine in any convenient manner. Where the pipe connects to the moving part of a sprung undercarriage, it is only necessary to put a few coils in the pipe to give flexibility.

The Steering Valve is inserted between pilot's control and the right and left brake systems. The valve is connected to the rudder bar, and acts as a distributor giving the following combinations:

(1) Normal braking. Compensated system (2) Right or left turns—full braking on inner wheel of turn—outer wheel at minimum braking.

Differential braking is not obtained until the rudder bar is nearing the limit of travel in either direction. On the completion of the turn, the brakes are automatically equalized.


The Wheel Brake Unit (as illustrated) comprises a three shoe internal expanding

servo brake, with the necessary operating motor, take-off springs and adjustable stops, all mounted on a disc. This disc transmits the brake torque to the flange on the axle through a ring of bolts.

The brakes are protected efficiently against mud and water. All adjustments can be made from the outside without removing the wheel. The brakes do not in any way interfere with the removal of the wheel.

For table of dimensions see page 11.

APPLICATION AND ADAPTABILITY TO AIRCRAFT TYPES.

These brakes can, owing to the use of the hydraulic system of transmission, be readily adapted to any machine.

There is no difficulty in applying either the compensated brakes or the steerable brakes to two-wheeled or four-wheeled undercarriages.

The brake unit is mounted on the axle, and it is only necessary to make provision for taking up the torque reaction.

The magnitude of this reaction depends upon the maximum retarding force which can be safely applied to the

Oil Reservoir.

machine, and this again depends upon the relation of the centre of gravity of machine to wheels. (See diagram on page 12).

With regard to the best method of applying this brake unit to an existing or projected machine, Vickers (Aviation) Ltd., would be very pleased to give prospective customers the benefit of their experience if they will kindly submit drawings of chassis and complete particulars of machine, including:

- (a) Weight of machine.
- (b) Size and number of wheels to be fitted with brakes.
- (c) Whether compensated or steerable type are required.

There will be no difficulty in installing the various components and the piping.

In the event of an order being placed for these brakes, the following can be supplied:

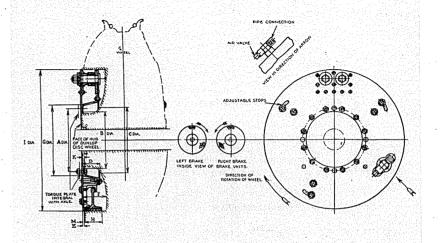
Special aero landing wheels with brake drums (English sizes).

Complete self-contained brake unit for bolting to flange on axle.

All solid drawn steel piping and connections.

Pilot's Control and Oil Reservoir and Steering Valve (when required).

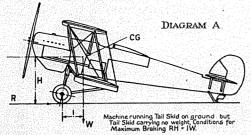
The above applies to compensated brakes for two or four-wheeled chassis.


When the steerable type is supplied it is necessary to include the special Distributor Valve.

A very useful table connecting brake size with weight of machine, Military and civil (two-wheel undercarriage) is given below:—

TABLE CONNECTING SIZE OF BRAKE WITH WEIGHT OF MACHINE.

			Ma	chine W	leight Gr	088
Bral ins.	ke Size m/m.	Wheel Size m/m.	Milit Lbs.	ary Kg.	Ci Lbs.	vil Kg.
		600 × 75	1520	690	1800	820
10 × 1 · 25	254 × 32	600 × 100	2030	925	2400	1090
	7.5	700 × 100	2370	1080	2800	1270
$12 imes 1 \cdot 5$	305 × 38	750 × 125	3170	1430	3750	1710
		800 × 150	4060	1850	4800	2180
		900 × 200	6100	2770	7200	3270
16 × 1·75	407 × 44 · 5	975 × 225	7430	3380	8780	4000
		1100 × 220	8200	3730	9700	4400
20×2	508 × 51	1250 × 250	10600	4800	12500	5700
		1500 × 300	15200	6900	18000	8200
$24 imes 2 \cdot 5$	610 × 63	1750 × 350	20800	9450	24600	11200


GENERAL ASSEMBLY OF BRAKES

Wheel	Size	Lbs. Maximum Refording	Athach	ment B	olts	3074	\$41B	Sp	ace [limen	sions				Brake	Sizes	Weight	Comp
Wheel Dia Mm	Tyre Dia MH	force of	Bolt Centres	Size	No.	В	C	D	E	F	G	κ	М		1	Н	of ena unit Lbs	Иō
600	75	270	1000A	DWE	3926	WAY	9545	(188E)	074	1.7	3000	心學和	05805	NO.	10	1.52	5.5	A462
600	100	360	19840	1.000	包罗	43,10%	18.345°	3,49,46	074	1.7	STANK.	de la light	370.00	4500	10	1.25	5.5	A462
700	100	420	5-8	V4	12	5.2	6-1	1.51	-082	2082	6.4	224	15	1460	12	1.5	70	A468
750	125	560	5-8	1/4	12	5.2	6-1	1-51	.082	2.082	6.4	-224	15	190	12 %	1.5	7.0	A458
800	150	720	5.8	1/4	12	5.2	6-1-	1-51	-082	2.082	6-4	224	15	14881	12	1.5	7.0	4469
900	200	1080	6.4	1/4	12	5.8	8.0	1.56	1498	2.1	7.0	234	15	多数を	16	175	9.0	A429
975	225	1320	6.4	1/4	12	5.8	8.0	156	1830	2-1	7.0	234	115	2000	16	1.75	90	A425
1100	220	1450	7.8	1/4	16	7.2	8.8	5.0	194	5.6	8.4	27	18	140.00	20	5.0	17.0	A460
1250	250	1875	7.8	1/4	16	7.2	8-8	5.0	-1995	2.6	8.4	.27	18	909K	20	2.0	17-0	A460
1500	300	2700	10-8	5/16	16	10-0	13.0	2.4	1869	2.97	11.6	-28	-18	REE	24	2.5	35	A461
1750	350	3680	10-8	5/16	16	10.0	13.0	2.4	1189	2.97	11-6	28	-18	1000	24	5.2	35	A461
9335784	20,000	25500	Asset	20000000000000000000000000000000000000	75/102	3000	120E	2000	440	3000	6333	1000	(500)	55.78	#(C)/5	(See 1)	3368	495
3573697	10000	Walker St	1465	10240	1003	1800 (S)	853	(ACC)	5,872	では	1889.6	25 EME	2525/6	SYSSE	28.03	14/137	38177	7577
98/4608	10000	i Anaking	888	444	1980	經濟	23,72	Web.	1000	原物學	(P05)	1 XXXX	1947/40	3000	550	37/4	Water Water	1000

ALL DIMENSIONS GIVEN IN THESE COLUMNS ARE IN INCHES

JOKERS /

CG = Position of centre of gravity.

W = Weight of machine.

L = Distance of CG behind wheels.

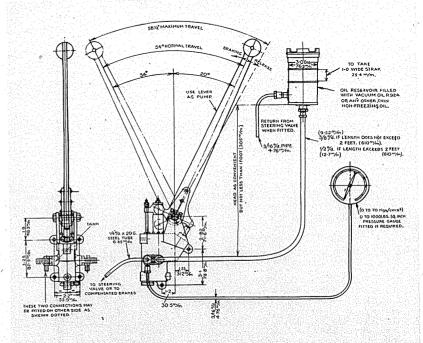
H = Height of CG above ground.

R = Retarding force applied at periphery of wheel, and assumes that wheel is on point of locking. (This is the worst condition).

The RH must not be greater than WL and the maximum retarding force.

$$R = \frac{WL}{TT}$$

The brakes will give a retarding force up to 30 per cent of the weight carried by the wheel.

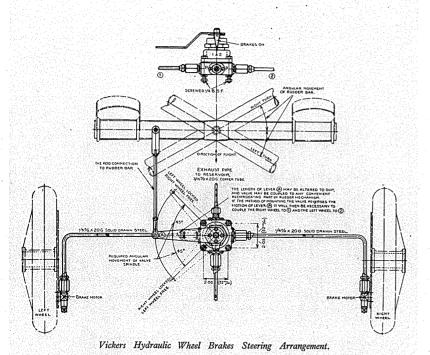

INSTALLATION AND MAINTENANCE.

The Wheel Brake Unit is shown on pages 8 and 11, and is a self-contained unit arranged for bolting to a flange on the axle. The brake torque is taken through this point and the undercarriage must be designed accordingly. The maximum unit drag force may be taken as 30 per cent of the maximum unit load carried by the wheel. The disc may be rotated around the axle and secured in the position most convenient for the run of the pipe. The brake unit is sent out with the shoes adjusted, but the adjustment should be checked on final assembly, so that wheel will just revolve when brakes are "off."

The Pilot's Control and Reservoir (see pages 9 and 13,) should be securely mounted in a position convenient for operation. The pump may be mounted with the plunger in the vertical or horizontal position, and the handlever may be modified in form and attached to the pivoted steel bell crank in any convenient position. The effective length of the lever should not be reduced. Six attachment points are provided on the body of the Pump.

The Steering Valve is shown on page 14, and full instructions for mounting are given on drawing.

It will be observed that the Steering Valve has a pointer registering with marks on the Body 1, 1 and 2 and 2. When the pointer is at 1, the brakes are applied to the wheel connected to port 1. When the pointer is moved to 2, the wheel only connected to port number 2 is braked. When the pointer is at any position short of 1 or 2, both wheels are equally braked.



The Steering Valve maintains a slight pressure in the exhaust chamber and ensures that the shoes of the wheel which is free during a turn shall be kept in rubbing contact ready for immediate re-application on straightening out.

The installation of the transmission pipe line does not call for any special care. The coil in the pipe to provide for movement should be approximately 3 inches (76 m/m) in diameter and should consist of say two complete turns. This coil should be placed so that its axis approximately coincides with that of the hinge pin of the moving part. The pipe line can be run in any convenient manner, and there need be no fear of air locks as these can be cleared away by the use of the Pilot's Control when filling.

It will be necessary to pump through a quantity of oil to ensure that all air is driven out, the air valves on the brake motors being opened in turn whilst the Steering Valve (if fitted) is operated.

VICKERS FUEL OIL AND WATER SYSTEMS

COCKS, VALVES, FILTERS AND PUMPS

The fact that this kind of accessory, made by us, is the standard equipment of the greater majority of aircraft of all types and makes produced in the British Isles is a testimony to its perfection.

Every year a large increase occurs in the numbers supplied to countries outside England.

Below is given a list of these accessories, each of which is described in the following pages.

When ordering, the drawing numbers and sizes of fittings required should be quoted.

INDEX

FUEL COCKS.					Page
General description and R.A.E. Report					16, 17
2-way, Screw and Screw, Plug Type					18, 19
3-way, Screw and Screw, Plug Type			15 00		20, 21
4-way, 1" B.S.P., Plug Type A.156					20, 21
4-way, 1" B.S.P., special, A.376					
4-way, ½" B.S.P., special, A.387					24
2-way, Screw and Screw, L Type					20
2-way and 3-way, Flanged, Plug Type, A.	288				26
2-way Screw and Olive					27
OIL COCKS.					
2-way, Screw and Screw, Plug Type					28
3-way, Screw and Screw, Plug Type					29
2-way, Screw and Hose, Plug Type					30
VALVES AND INDICATORS.					
Foot and Non-return Valves					31
Horizontal Non-return Valve					32
Fuel Flow Indicator and Non-return Valv	ө				35
FILTERS.					
B.E.S.A. Type A.202 and A.113					38
PUMPS.					
Lever Action, Mark III, Hand Type, A.13	30				36, 37
					38
Centrifugal, 3" Mark II*, Type A.126					39 to 41
Centrifugal, 2" Mark VI, Type A.163			5000		42, 48
Pipe Clips					47
Chamber for remote reading oil thermometer					48
Metal Couplings for Fuel Pipes				하는 이렇다	46 to 51

English Patent 271156 (and foreign patents)

GENERAL.—These cocks are of the plug type and each consists of three main parts—the body, the plug and the gland. The body is a stamping of "Vickers Duralumin" and the bronze seating for the plug is inserted by a patented process during the stamping operations.

The plug is of Vickers Immaculate Steel (Rustless), hardened and ground.

The handle is a stamping of Duralumin and the gland parts and stop band are of the same metal. The gland is externally adjustable. The plug is spring loaded, has a very smooth action and is automatically locked in any position.

All the Duralumin parts are anodically treated.

These cocks will take the Air Ministry metal couplings with exception of A.288.

TESTS.—All cocks are subject to an internal pressure of 15 lbs. per square inch. See following reports.

ROYAL AIRCRAFT ESTABLISHMENT REPORT No. E.2160.

Subject :--

Fuel Cock with Stainless Steel Plug (VICKERS & B.S.P.)

CONSTRUCTION.—The cock is of the usual tapered seat with a stainless steel plug, seating in a gunmetal body. The plug is pressed into its seating by a strong spring.

TESTS.—The cock was tested for 12 hours in the delivery line of a pump delivering petrol at a pressure of 30 lbs./sq. in. At the same time the plug was oscillated through an angle of 60° approximately 30,000 times. No leakage from the gland took place throughout the tests, and at the conclusion the plug was petrol tight in the closed position at the above pressure.

The cock was then immersed in petrol for 3 days; on examination it was found that no wear had taken place and no sign of rust was evident on the plug.

It is thought that this cock is very satisfactory and superior to many of the existing petrol cocks now in use.

REPORT ON THE VICKERS FILEL COCK

TYPE 1919

Engine Section, Imperial College, S.W.7.

The petrol tap tested was for $\frac{3}{8}''$ piping: When open there was a straight-through bore of $\frac{1}{4}''$. Its resistance was tested and found to be equal to that of less than 4 feet of $\frac{3}{8}''$ piping. The resistance of a flat surface cork tap, tested under the same conditions, was found to be equivalent to over 40 feet of $\frac{3}{8}''$ piping. The weight of the Vickers tap without connecting pieces, was found to be $5\frac{1}{2}$ ozs., and the weight of the cork-seated tap was $6\frac{1}{4}$ ozs.

The Vickers tap can be rotated continuously, so that there are two positions at which it is open and two at which it is closed. The tap was placed in a petrol system and the following tests were made. The various positions of the barrel for opening and shutting were used in regular order.

I. At 10 lbs, pressure when shut off.

Turned off and on 50 times: No leak. Left running for 10 minutes: No leak.

Shut off for 10 minutes: No leak, no petrol through.

Turned off and on 50 times: No leak, no petrol through when off. System closed beyond the tap so that there was a pressure of 10 lbs.

on both sides of tap.
Turned off and on 50 times: No leak.

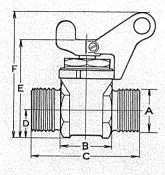
II. At 20 lbs. pressure when shut off.

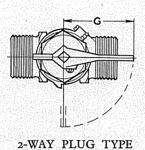
Turned off and on 10 times: When shut off there was no petrol through but there was a very small leak through the gland at the spindle. Petrol very slowly oozed out, but only sufficient to form a drop every two or three minutes.

System closed beyond the tap: Same result.

III. Endurance test at 10 lbs, pressure.

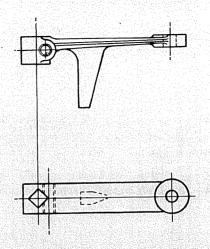
The spindle was slowly motored round at 150 r.p.m. for one hour in a clockwise direction and for one hour in an anti-clockwise direction. The leak found above continued during the first hour, but ceased when the direction of rotation was changed, and there was no leak afterwards.

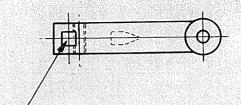

IV. At 10 and 20 lbs. pressure,


Tests I and II were repeated. No leak was ever obtained and no petrol through when shut off.

V. The spindle was jerked out and in several times. (The spring permits a small movement in this direction.) It was found that the small leak was restarted and continued both at 10 and 20 lbs. when tap was several times opened and shut. The spindle was pressed hard in and turned several times, and the leak no longer took place at 10 or 15 lbs. but persisted slightly at 20 lbs. The leaks were all extremely small, and it is probable that in a warm place there would never be sufficient to form a drop, but that it would evaporate as it appeared.

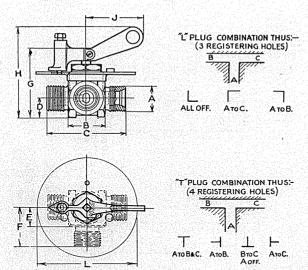
SCREW AND SCREW PLUG TYPES—2-WAY




Drawi	ng No.	A	В	c			F		Weight	A.G.S
Dural	Brass	•	3	U	D	Е	l r	G	ozs.	No.
0.000	A174	∦″ B.S.P.	0.7	1.5	0.3	1.3	1.65	1.0	2.5	
A253	STEEL	ł" "	1.25	2.1	0.4	2.0	2.7	1.85	4.0	731-B
	A427	1" ,,	1.25	2.1	0.4	2.0	2.7	1.85	9.25	
A250		3" ,,	1.2	2.3	0.55	2.1	2.8	1.85	4.5	731-D
	A405	1" ,,	1.2	2.3	0.55	2.1	2.8	1.85	9.75	Sec. 523
A249		1" ,,	1.2	2.5	0.65	2 3	3.0	1 85	5.0	731-F
W SEE	A380	ī″ .,	1.2	2.5	0.65	2.3	3.0	1.85	11.5	56.544
A251		§" ,,	1.5	3.0	0-8	2.8	3.7	2.1	9.25	731-G
\$ 500 B	A473	§" ,,	1.5	3.0	0.8	2.8	3 - 7	2.1	19	
A254		ł" .,	1.5	3.0	0.8	2.8	3.7	2.1	10.0	731-H
10.53	A470	ł" "	1.5	3.0	0.8	2.8	3.7	2.1	20	
A246		ł" "	1.5	3.2	0.85	3.0	3 . 85	2.2	13 5	731-I
17.5	A474	3" ,	1.5	3.2	0.85	3.0	3 85	2.2	23	STANIA.
A255	4.5	1.0",,	1.5	3 .2	0.85	3.0	3.85	2 · 2	14.5	731-J
	A475	1.0",,	1.5	3.2	0.85	3.0	3 . 85	2.2	33	
A332		11," ,,	2.2	3.8	1.2	4.05	5.45	3 · 15	38	
	A531	11" ,,	2.2	3 · 8	1.2	4.05	5 45	3 15	54	
A343		11, ,,	2.2	4.0	1.2	4.05	5 45	3 15	41	- Dawn
	A532	$1\frac{1}{2}$ ",,	2.2	4.0	1.2	4 05	5 45	3 · 15	58	

VICKERS 2-WAY FUEL COCKS

SPECIAL LEVER HANDLE



Alternative position of square

In lieu of the butterfty type of handle, a special lever handle, as illustrated above, can be supplied with Vickers 2-Way Fuel Cocks, if specially ordered.

SCREW AND SCREW PLUG TYPE 3-WAY

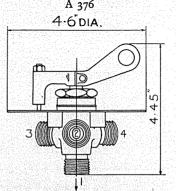
VICKERS FUEL COCKS

SCREW AND SCREW PLUG TYPE-3-WAY

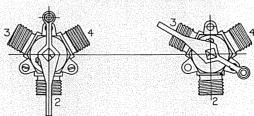
Drawi	ng No.	A	В	С	а	E	F	G	н	J	ĸ	L	Weight	A.G.S.	Remarks
Dural	Brass		ి		ע	. P	ъ,	G.	"	J	~	'n	ozs.	No.	Kemarks
0.54	A271	1" B.S.P.	.7	1.5	-3	35	75	1 37	1 - 75	1.0	1000	100	2.25	3.4.35	"L" Plus
A517	400	l 1" "	1.2	2.1	-6	-6	1 05	2.2	2.9	1.85	2.95	3 . 25	17.000	200	"T"
A349		ł" "	1.2	2.1	-6	-6	1.05	2.2	2.9	1.85	2.95	$3 \cdot 25$	1000	732-B	"L" "
	A533	1	1.2	2.1	-6	-6	1.05	2.2	2.9	1.85	2.95	3 - 25		7.576	"T",
	A534	l I" ",		2.1	-6	.6	1.05	2.2			2.95		40.000	100	- CC T 11
A256	55 S (A)	å" ,,	1.2	2.3	-6		1.15	2.25	2 . 95		2 95		7.0	732-D	cc mt >>
A406		3"	1.2	2.3	-6	-6	1.15	2.25		1 .85			7.0	732-D	"L" "
120 400	A535	i* ",	1.2	2.3	.6		1.15	2.25	2.95		2.95		40.00	.02 2	: (i m :):
	A536		1.2	2.3	-6	-6	1.15	2.25	2.95	1.85		3 . 25		3.04	"T"
A257	7000	1″ "	1.2	2.5	-6		1 .25	2.25		1 85		3 25	7.5	732-F	"市""
A407	宣传系统	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1.2	2.5	.6	-6	1.25	2.25		1 85			7.5	732-F	"Ĺ""
A401	A467	*, "	1.2	2.5	-6	-6	1.25	2.25			2.95		14.0	132-E	"T" "
	A469		1.2		6		1.25						14.0		"L" "
4050	A400	· .		2.5				2.25	2.95		2.95			500 G	"#""
A258	经经验	8, ,,	1.5	3.0	.75	.75	1.5	2.8		2 1		3.8	13.0	732-G	
A398		8 ,,	1.5	3.0	.75	.75	1.5	2.8				3.8	13.0	732-G	
	A481		1.5	3.0	-75	-75	1.5	2.8				3.8		33.34	"т",
	A488	8 ,,		3.0	.75		1.5	2.8				3.8	(4800-12)	1376.47	14 44
A318	- 新加州	₹″,,		3.0	-75	.75	1.5	2.8				3.8	13.5	732-H	"т",
A399		₹″ "``	1.5	3.0	.75		1.5	2.8	3.7			3.8	13.5	732-H	"L" "
	A482	ł" "	1.5	3.0	-75		1.5	2.8		2 · 1	3.5	3.8	23.5	1834	"Т",
	A489	1" ,,	1.5	3.0	.75	.75	1.5	2.8	3.7	2.1	3.5	3.8			"L"
A486		17	1.6	3.2	-8	- 8	1.6	2.95	3 85	2 · 1	3.7	4.0		10.71	"T",
A480	46.4	l'	1 6	3.2	-8	-8	1.6	2.95	3 85	$2 \cdot 1$	3.7	4.0		1000	"L",
	A537	7″ ''	1.6	3.2	-8	-8	1.6	2.95	3 . 85			4.0			"T" "
11.	A538	7" "	1.6	3.2	-8		1.6	2.95	3 . 85	$2 \cdot 1$		4.0		5860	"Ĺ" "
A285		i ∙o″ ,,		3.2	-8		1.6	2.95	3.85			4.0	12-10	732-J	arm m
A487	MARKET	1.0" .,		3.2	-8		1.6	2.95				4.0	分平年的	732-J	"L" "
	A539	1 0#		3.2	.8	-8	1.6	2.95				4.0	100	.02.0	arm "
	A540	1.0"	1.6	3.2	-8	-8	1 6	2 95	3 85	2 1	3.7	4 0			: α.Ψ. » ` ''
A590	11010	3.10	2.25	3 85	1 - 125	1 .125		3 975				5.1			arm m
A591	10.14.04		2 25		1.125	1.125 1.125			5.02	2.75		5.1	In a ARM	10.00	"T," "
WORT	A592	1‡″ "													" this,"
								3 975		2.75		5.1		1998	"L""
	A593	11, ,,	z · 25	3 . 85	1 120	1 125	1 925	3 975	10:02	Z : 75	4.8	5.1	100		"Li",,

K=Pitch circle of bolt holes in flange

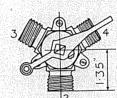
½" B.S.P. PLUG TYPE-4-WAY A 156

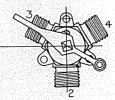


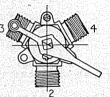
Weight 2.5 ozs (Brass)



VICKERS FUEL COCK

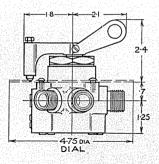

SPECIAL 4-WAY. ½" B.S.P. A 376

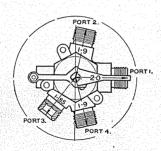

THIS PORT ALWAYS OPEN


BRANCHES 1 TO 2 OPEN 3 TO 4 SHUT

BRANCHES 1 TO 4 OPEN 2 TO 3 SHUT

BRANCHES 1 TO 3 OPEN 2 TO 4 SHUT

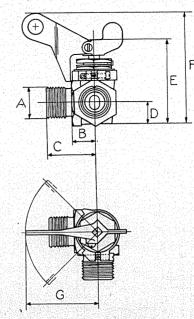

BRANCHES 1 TO 3 & 4 OPEN 2 SHUT



SPECIAL 4-WAY TYPE

All branches ½" B.S.P.

A 387

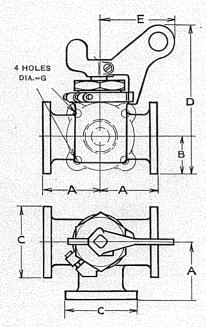


This Cock has been designed for special duties and is of similar construction to our standard type shown on pages 18 and 20. The following combinations can be obtained:—

1 to 2; 1 to 3; 1 to 3 and 4; 1 to 4; All off (i.e., connection 1 sealed).

The indication dial has positive stops at all positions and a bar for "all-off" position. The dial would be engraved to suit purchaser's requirements. Weight $=1\cdot 5$ lbs.

VICKERS FUEL COCK

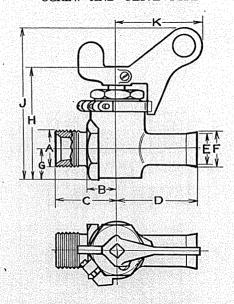

SCREW AND SCREW "L" TYPE

Drawi	ng No.	Α	В	С	D	Е	F	G	Weight
Dural	Brass	A		J					ozs.
A544	1653/27:	1" B.S.P.	-6	1.25	.55	2 17	2 · 87	1 85	
	A550		-6	1.25	-55	2.17	2.87	1 85	
A545	10481416	ł" "	-6	1.25	-55	2.17	2 87	1 85	5 25
	A551	4" ,,	•6	1.25	.55	2.17	2 · 87	1 85	100
A390	(新数型(b)		-6	1.25	.55	2.17	2.87	1.85	5.5
	A552	1," ",	-6	1.25	.55	2.17	2 · 87	1.85	
A546	1489	ł" ,,	-75	1.5	.7	2.73	3 · 63	2.1	
	A553	§" ,,	.75	1.5	.7	2.73	3.63	2.1	20
A508	CONTRACT!	2" ,,	-75	1.5	-7	2.73	3.63	2.1	
	A554	ł' ,,	.75	1.5	.7	2.73	3.63	2.1	21
A547		ł" "	.75	1.6	-8	2.95	3 · 85	2.1	S. Say
	A555	7" ,,	.75	1.6	-8	2.95	3.85	2.1	
A506		1.0",,	.75	1.6	-8	2.95	3.85	2.1	
	A556	1.0",,	-75	1.6	-8	2.95	3.85	2.1	The state of
A548		11," ,,	Sec.	展游 :	1300	150			
	A557	1‡′ "	100	DOM:				190	
A549		11," ,,		195	10000	March 1		量上等	10 th 10
	A558	11," ,,	0.585	10000		1000		18.00	

FLANGED PLUG TYPE

A 288

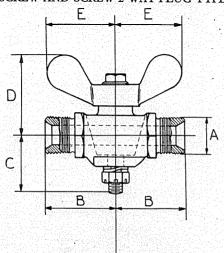
Drawing No.	Size and Type	A	В	С	D	E	F	G	Weight
A288	1.0" 2-way 1.0" 2-way 1.0" 3-way	1.6	1.0	2.0	4.1	2.1	1.875	17/64	

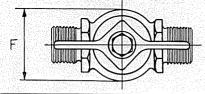

Dimensions-Inches.

This Cock is similar to the standard plug type cock, except that the connections are flanged instead of screwed.

VICKERS FUEL COCKS

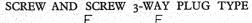
SCREW AND OLIVE TYPE

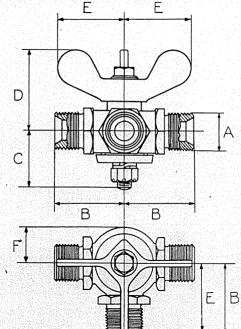



Drawi	ng No.			С	D	E	F	G	н	J	К	Weight
Dural	Brass	Δ	В		L,	٠,						ozs.
A347		₽" B.S.P.	-625	1.05	1.05	-35	•4	-5	2 ·12	2 · 82	1 -85	4.5 oz
A401	A541	l 1″ ,	·625	1 · 05 1 · 15	1.05	·35 ·39	·4 ·437	-5 -5	2.12	2.82	1.85	Vita V
A401	A238	1" "	-6	1.15	1.5	-39	-437	-5	2.0	2.7	1.85	
A309		į, "	-6	1 .25	1 85	-5	-562	-65	2 · 27	3.0	1.85	5 10
A269	A477	1, "	·6 ·75	1.25	1.85	·5 ·75	·562 ·8	·65	2.78	3.7	2.1	10 25
	A542	5" 22	.75	1.5	2.0	.75	-8	.75	2.78	3 . 7	2.1	
A264		1" "	.75	1.5	2.0	-75	-8 -8	75	2.78	3·7 3·7	$\frac{2 \cdot 1}{2 \cdot 1}$	10 oz.
	A543	1" "	•75	1.5	2.0	-75	.8	•75	2.78	3:1	2.1	

This cock is similar to the standard 2-way plug type cock, except that one connection is arranged for the attachment of rubber hose.

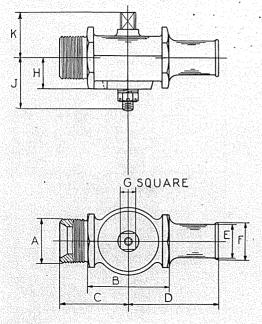
VICKERS OIL COCKS SCREW AND SCREW 2-WAY PLUG TYPE




Drawing No.	А	В	С	D	Е	F	Weight
A484 A559 A497 A383	1" B.S.P.	1 · 27 1 · 55 1 · 7	1 · 05 1 · 25 1 · 35	1 · 44 1 · 8 1 · 85	1·22 1·5 1·5	1.35 1.6 1.8	8 9
A485 A525 A268	3″ 7″ 1.0″ ,,	1.83 2.0 2.0	1·4 1·5 1·5	1.92	î.5	1.95 2.0 2.0	ıĭ

These cocks have been designed for use in oil systems and have large bores. End connections are screwed BSP thread and take Air Ministry standard couplings.

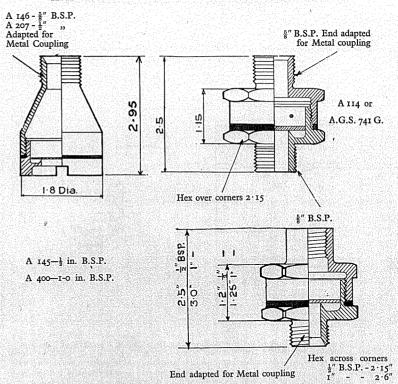
VICKERS OIL COCKS SCREW AND SCREW 3-WAY PLUG TYPE



Drawing No.	A	В	c	D	Е	F	Weight	Remarks
A560	₽" B.S.P.	17.45		100	3572	170.5 (4)	A-144-18	"T" Plug
A561	i' ,	10.5	100	1000	18.15	10/16 P	1000	"L" ,,
A562	ì″ ,,	152.5	1000	1773	1000	有所证	经验证证据	"Т" "
A563	3" ,,					10.0		"L" ,,
A384	i" ,,	1.55	1.25	1.8	1.5	- 8		"T",
A564	ī″ "	1.55	1.25	1.8	1.5	-8	SEE FORES	"L" "
A565	Į" "	TO SEE	13340			1800	SEE OF	"T",
A566	£" ,,		N. Car	1000		X4/6		"L" "
A567	1" ,,	15000	1644	10.00	1000			"T" "
A568	2" ,,		Section 1		State .			"L" "
A569	7" ,,	1000	2,445	1450	1724		CONTRACT.	"T",,
A570	7" ,,		47,400		10000		25,455,15	"L" "
A382	1.0",,	2.0	1.45	2.0	1.5	1.1	1880	"T" "
A498	1.0",,	2.0	1 .45	2.0	1.5	1.1	35 SW 36 F	"L" ,,

VICKERS OIL COCKS

SCREW AND HOSE 2-WAY PLUG TYPE

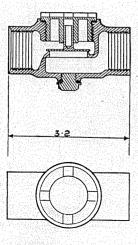

Drawing No.	A	в С р			J K	
A185 A494 1.0	" × 16 T.P.I. 0" B.S.P.	$ \begin{array}{c c c} 2 \cdot 4 & 2 \cdot 0 & 2 \cdot 65 \\ 2 \cdot 4 & 2 \cdot 0 & 2 \cdot 65 \end{array} $	$\begin{array}{ c c c c } 1 \cdot 0 & 1 \cdot 1 \\ 1 \cdot 0 & 1 \cdot 1 \end{array}$	·45 ·91 ·45 ·91	1.5 1.35 1.5 1.35	15·5 16·0

GENERAL.—These cocks have been designed for use in oil systems for insertion between the oil tank and the engines to prevent flooding in cases where the tank is above the engine. The body is of "Vickers Duralumin" and the spring-loaded plug of Vickers "Immaculate" steel (rustless), hardened and ground.

VICKERS FOOT VALVES

AND NON-RETURN VALVES FOR FUEL SYSTEMS

GENERAL.—In fuel systems it is occasionally necessary to fit valves which will ensure that the flow takes place in one direction only. It is also necessary, when centrifugal pumps are used on suction lifts, to fit a foot valve. Three such valves are illustrated here. There are also numerous variations of these and we shall be pleased to submit sketches of valves to suit special conditions.


TESTS.—All valves are tested to 15 lbs. per square inch.
WEIGHT.—These vary from 4 to 8 ozs. according to type.

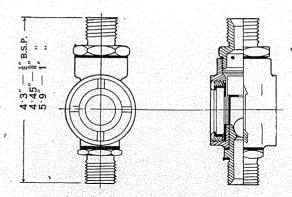
VICKERS NON-RETURN VALVES

HORIZONTAL TYPE FOR FUEL SYSTEMS

A $165 - \frac{1}{2}$ B.S.P. A $171 - \frac{1}{8}$,, A $172 - \frac{3}{4}$,, A $476 - \frac{1}{8}$,

This non-return valve has been designed for insertion in a horizontal pipe line.

The body is of "Vickers Duralumin" and the valve, which is of Vickers "Immaculate" steel (rustless) hardened and ground, is carried in a removable brass guide. The valve faces are of the metal to metal knife edge type. The internal passages are carefully machined and the moving valve is extremely light so that the loss of head through the valve is small.

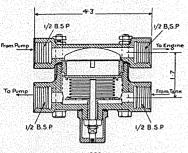

TESTS.—All valves are tested to 15 lbs. per square inch, and on flow test will pass one gallon of fuel per minute with a head of 2 inches at inlet.

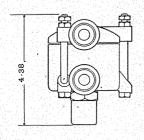
WEIGHT.-A165-171-172=71 oz. each.

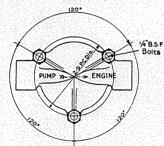
VICKERS FUEL FLOW INDICATORS

AND NON-RETURN VALVES

A 188—½" B.S.P. A 198—§" ,, A 278—1" ,,




GENERAL.—This indicator is placed in the delivery pipe of the main pump, and gives visible indication of the rate of flow. It consists of a tubular body enclosing a ball and float, both of which are visible through a window at the lower end of same. The float is machined from "Vickers Duralumin" and is readily lifted by the flow of fuel. The non-return valve is a phosphor bronze ball resting on the usual conical seat and serves to isolate the lower pipe in the event of breakage of same. The rapidity of motion of the ball is an indication of the rate of flow. The body is of Duralumin and the inlet and outlet connections take the Air Ministry metal coupling.


TESTS.—All indicators are tested to 15 lbs. per square inch.

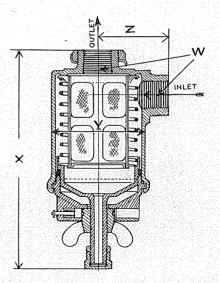
WEIGHT.— $\frac{1}{2}$ and $\frac{5}{8}$ = 7 ozs. approx. $\frac{1}{8}$ = 17 · 5 ozs.

RELIEF VALVE FOR FUEL SYSTEMS A 372

GENERAL.—This valve should be placed as near as possible to the wind-driven centrifugal fuel pump; its duty is to by-pass all fuel delivered by the pump in excess of the engine requirements and prevent the pressure in the delivery system rising beyond a predetermined figure. The body of the valve is in two portions machined from "Vickers Duralumin" stampings. The large diameter plate valve and seating are of brass, the valve being held on its seat by an adjustable spring. Springs can be supplied to give any pressure from $1\frac{1}{2}$ to 10 lbs. per square inch. The valve is guaranteed to by-pass 150 gallons per hour, with a rise in pressure of not more than 10 per cent over normal. The action of the valve can be readily seen from the accompanying illustrations.

All four connections are screwed internally $\frac{1}{2}''$ B S.P., and can be adapted to take Air Ministry metal coupling by the addition of V.G.S. 241.

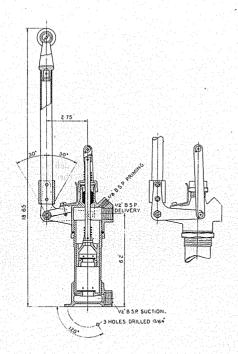
TESTS.—All valves are tested to 15 lbs. per square inch.


WEIGHT.-2 lbs. 21 ozs., fitted with V.G.S. 241.

When ordering state pressure at which the valve is required to work, and whether it is to work in conjunction with a 2" or 3" centrifugal fuel pump.

B.E.S.A. FUEL FILTERS

A 202 similar to A.G.S. 600


	w	x	Y	z	Weight	
A.G.S. 600 A.G.S. 601 A.G.S. 602	1" ,	6.15	2.6	1.95	1 lb. 4 · 75 ozs. 1 lb. 7 ozs. 2 lb. 5 · 5 ozs.	

May be supplied on special request with coarse gauze for use as oil filters.

VICKERS HAND FUEL PUMP

(Lever Action) Mark III A 130

USES .- This pump can be used in various ways, viz. :-

- (1) Auxiliary supply from main tank to gravity or service tank.
- (2) Inserted in the delivery side of a centrifugal pump pipe line to prime this pump in cases where it is placed higher than the bottom of the main tank. The special disposition of the valves in the hand pump enables the centrifugal pump to deliver through the hand pump, and both pumps to be operated independently or together.

GENERAL.—The pump is of simple construction and comprises a barrel with upper and lower caps, a piston, piston rod, and lever action handle. The valves are of the usual plate and knife edge type, the suction valve and inlet connection being embodied in the base and the delivery valve in the piston. The upper cap carries the outlet connection and piston rod gland, the latter being packed with graphited asbestos yarn. The action of the pump is quite simple; the reciprocating motion of the piston causes the liquid column inside the barrel to move continuously in an upward direction, due to the non-return action of the two valves. The valves both open in the same direction, and it is this principle which enables the pump to be used as indicated above. It will be observed that even when the pump is working on suction lifts, the gland is never under the influence of that suction, and there is therefore no possibility of air being drawn into the system.

PERFORMANCE.—This pump is guaranteed to deliver 60 gallons of fuel per hour with average working.

Typical Test Result:

Machine: Vickers "Vulture."

Hand Pump: No suction lift, 11 ft. delivery head.

Duty: Main tank to service tank through approximately 25 lin. ft. of \(\frac{1}{6} \)" o./d. piping, one cock and usual bends, etc.

Output: 70 gallons per hour with average working.

It is always advisable to use a foot valve on suction lifts, and in this way lifts of 10 feet are easily obtained.

CONNECTIONS.—The suction and delivery openings are screwed ½" B.S.P. internal thread. Half-inch Olive connections, or V.G.S. 241 (to fit Air Ministry metal couplings), can be fitted as an extra.

It is seldom necessary to resort to priming, but a boss is provided (tapped \(\frac{1}{6}'' \) gas) for use when conditions make it essential.

The method of connecting the upper cap to the barrel is such that the inlet and outlet connections can be readily displaced with respect to each other around the axis of the pump.

DIMENSIONS.

Height.—Base to top of handle, 18.65". Stroke of pump, 3 ins.

Weight.—4 lbs

Tests.—All Pumps are tested for the above delivery and are subjected to an internal air pressure test of 10 lbs. per square inch.

Pumps of all-brass construction can also be supplied for use on seaplanes.

We also supply a Twin Coupled Hand Pump (A 150) with an output of 100 gals. per hour.

VICKERS HAND FUEL PUMP

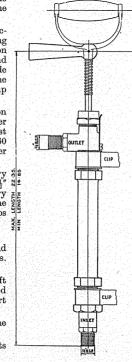
Direct Action Type A 299

USES.—This Pump can be used in place of the lever action type (see page 36), and has the same general characteristics.

GENERAL.—The pump is of simple construction and comprises a barrel with end caps carrying the suction and delivery connections, a bucket piston with rod projecting through a spring loaded gland and a handle which may be of either the offset or spade grip types. The valves are of Rustless Steel of the plate and knife edge type. The action of the pump is similar to that of the type described on page 37.

PERFORMANCE.—Will work under a suction lift of over 10 ft. and deliver to a height of over 10 ft. Will deliver under normal conditions just over one gallon per minute when working at 55—60 strokes per minute. A delivery of two gallons per minute can be obtained for short periods.

CONNECTIONS.—The suction and delivery openings are screwed ½" B.S.P. internal thread, ½" % 2 Olive connections or V.G.S. 241 (to fit Air Ministry Metal Coupling) can be fitted as an extra. The complete pump can be secured to machine by clips placed round the end caps as indicated.

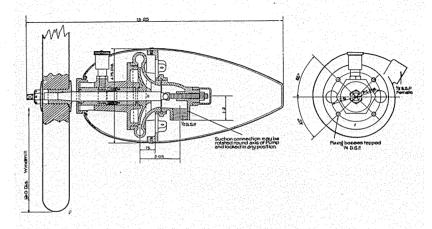

WEIGHT.-11 lbs.

TESTS.—All pumps are tested for delivery and are subjected to an internal Air Pressure of 10 lbs. per square inch.

This pump has been tested at the Royal Aircraft Establishment, Farnborough, and we are permitted to give the following extract from the official report E.2298. dated 26-1-27:—

The Volumetric Efficiency is very good—One gallon of petrol was delivered in 55 Strokes.

The following table shows the mean results of the tests:—



Delivery Head feet	Suction Lift feet	No. of Strokes required to commence delivery	No. of Strokes per min.	Delivery in galls.	Delivery press: mean in lbs. per sq. in.	
5 5 —	2·25 2·25 10·75 10·75	7 7 12 30	60 106 60 20	1·1 2·0 1·1 ·36	Max, 15 3 2	

VICKERS CENTRIFUGAL FUEL PUMP

3 Inch. Mark II*. A 126

USES.

- (1) Pumping direct from main tank to carburetter. The non-pulsating character of the delivery makes it specially suitable for this purpose. In modern high speed machines it is necessary to fit a special relief and by-pass valve in order to maintain the pressure within predetermined limits throughout the whole speed range.
- (2) Pumping from main tank to service tank.
- (3) A combination of the above systems, usually with an auxiliary hand pump. This pump is best fitted below or level with the bottom of the Main Tank. In cases where this is not possible it will be necessary to fit a hand pump so that the former may be primed. With proper precautions suction lifts as great as 10 feet may be adopted.

For General Description and Performance see next page.

VICKERS CENTRIFUGAL FUEL PUMP

Mark II*.

GENERAL.—This pump is of the direct wind-driven type, the windmill and impeller being mounted on the same spindle. The spindle is of steel, case-hardened and ground, and runs in hard phosphor bronze bearings. The volute casing is of gunmetal and takes the suction and delivery connections. The suction connection is adjustable and may be rotated round the axis of the pump and locked in any position. The nose piece is of "Vickers Duralumin" and carries the gland and renewable bushes. The gland, which is packed with graphited asbestos yarn, is spring loaded and a screw-down greaser is fitted to lubricate the outer bearings. The complete pump is enclosed in a spun aluminium streamline case.

FIXING.—Four tapped bosses are provided on the volute casing. The suction and delivery connections are screwed internally ½" B.S.P., and can be adapted to take Air Ministry metal coupling by the addition of A.G.S. 627.

PERFORMANCE.—The pump is fitted as standard with a two-bladed windmill suitable for all speeds from 45 to 120 m.p.h. All pumps pass the following tests.

Delivery, 150 gals, per hour against 25 feet head at 3,500 r.p.m. (approximating to 72 m.p.h. wind).

Pressure test, 10 lbs. per square inch.

For other deliveries, see curve on opposite page.

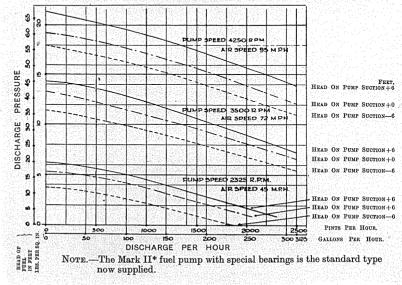
The pump absorbs approximately \(\frac{1}{5} \) h.p.

WEIGHT.—Pump complete, with fairing and windmill 5 lbs. 7 ozs.

This pump can also be supplied fitted with brake gear (A. 265).

VICKERS CENTRIFUGAL FUEL PUMP

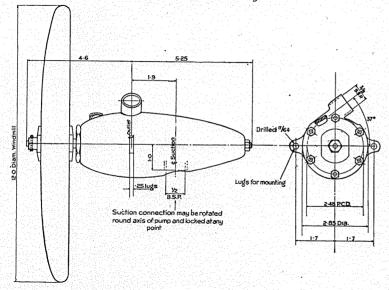
MARK II*.


3" IMPELLER WINDMILL NO 28083 (12" DIA. PITCH 1 56 FEET)
COPY OF TEST AT THE ROYAL AURCRAFT ESTABLISHMENT FARNBOROUGH 9-7-18.

Subject: -Vickers Mark II* Fuel Pump, with Special Bearings

This report details tests of a modified standard "Vickers" centrifugal pump fitted with plain phosphor bronze bearings instead of ball bearings, and a simplified packing device to keep the pump spindle leak tight.

The pump, as received, was mounted in a wind channel, and ran a duration test of 100 hours at 4,000 r.p.m. at its maximum full boreload of 3,270 pints per hour at a delivery pressure of 4·4 lbs. per square inch. The pump was then fitted in an aeroplane and flown for 75 minutes. It was then dismantled for examination of the modified parts. Finally, it was reassembled and run for another 4 hours in a wind channel.


Both when starting and finishing the 100 hours run the spindle gland was tight with no leakage, and the pump showed no signs of fuel leakage throughout the tests; the bearings and modified packing are very satisfactory. The spindle friction is very much less than the "Vickers" pumps previously tested. After the 100 hours run the load necessary to just rotate the spindle was only .375 ounces at 6 in. radius.

VICKERS CENTRIFUGAL FUEL **PUMP**

2 Inch. Mark VI. A 163

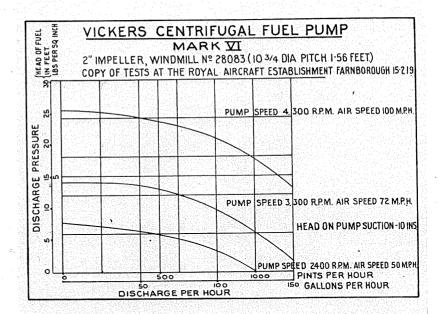
USES.—See remarks re 3 inch, Mark II* (page 39).

GENERAL.—Similar construction to 3 inch.

INSTALLATION.—Two lugs are provided on the volute casing. The suction and delivery connections are screwed $\frac{1}{2}$ " B.S.P. and $\frac{3}{8}$ " B.S.P. respectively, and can be adapted to take Air Ministry metal coupling by the addition of A.G.S. 627.

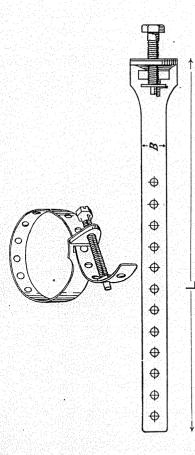
PERFORMANCE.—The pump is fitted with a two-bladed windmill suitable for all speeds from 45 to 120 m.p.h. All pumps pass the following tests:—

Delivery—50 gallons per hour against 10 ft. head at 3,500 r.p.m. (approx. 72 m.p.h. wind).


Pressure test-10 lbs. per sq. inch.

For other deliveries see curve on page 45. The pump absorbs approximately $\frac{1}{8}$ h.p.

WEIGHT.—Pump complete, with fairing and windmill, 2 lbs. 10 ozs.


SPARE PACKINGS .- 10928. Sheet I.

VICKERS PIPE CLIPS

Made from brass strip, this clip has the advantage over many others that it can be used for a number of pipes of different external diameters. It is, therefore, well worth standardising

Easy to fit; lasting a long time and easy to remove, it will save money in the long run.

V.G.S. 17 Mark	Pipe Diameter	В	L	
1	0-1	0.35	5.05	
2	13 −2	0.55	10 · 15	
3	21-21	0.7	11 32	
4	2-1	0.7	15 -8	

Dimensions=Inches.

CHAMBER FOR REMOTE READING OIL THERMOMETER

VGS 611

In modern aero engine installations it is necessary that the temperature of the oil in the lubrication system should be kept under observation. For this purpose, it is usual to employ a Thermometer of the remote reading type which depends for its action upon the expansibility of some volatile liquid such as ether.

There are often difficulties encountered in finding a suitable location for the insertion of the "pencil" or cylinder in the circulation system since if the pencil is directly inserted in the pipe line, serious obstruction occurs. To overcome this difficulty Vickers (Aviation) Ltd. have developed a small chamber, VGS 611, which forms a convenient unit and has been so proportioned as to offer no restriction to the flow.

As will be seen from the illustration, the pipe branches are formed integral with the two parts of the chamber and are set at any desired angle to order; thus "VGS 611-45" denotes, as in the illustration, an angle of 45° between the branches which are 1" overall diameter with beaded ends.

These units are subjected to a test pressure of 40 lbs. per square inch.

The smaller illustration shews a method of supporting the chamber upon the bulkhead by means of a suitable flanged fitting.

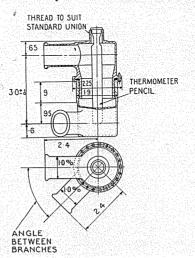
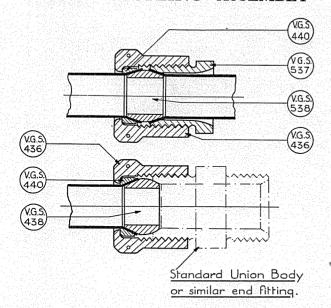


DIAGRAM SHOWING METHOD OF MOUNTING THERMOMETER CHAMBER UPON BULKHEAD

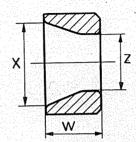


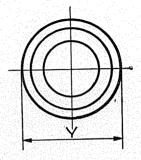
VICKERS METAL COUPLINGS

FOR FUEL PIPES

Vickers Metal couplings replace rubber joints in the fuel pipes; they conform to British Air Ministry standards. Standard sizes of the assembled couplings and their component parts are set out in the following tables.

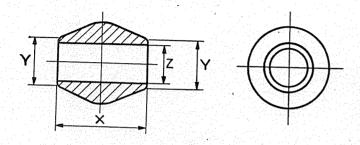
DURAL COUPLING-ASSEMBLY




			A service of the contract		
		familiar Salarian Malasi	5 Table 30 Tel 18661	Section Library Telephone	5 (5 (5 (4 Here) 5 (5 (5 (4 Here)
	Mark	A R RR	0 00	ים ים ת	0 11
		1 2 2	1 0 1 00 1		чп
3.	D - 1D: (D)			STATES STATES	
Ü	External Diameter of Pipe	18" 18" 18°	1 16°	1" 1" 1"	7" 1.0"
		Levels Revised Name			1 - 5 E 3 A D C C C S A P
					A color, or Properties

DURAL COUPLING—PIPE COLLAR

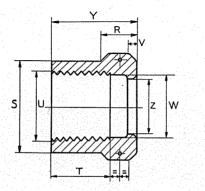
(V.G.S. 440)

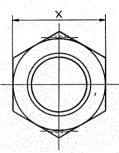

Mark	External Diameter of Pipe	Z	Y	x	w
A	16	13	0.325	0.25	0 155
В	1	17	0.44	0 · 345	0.25
ВВ	16	}}	0.523	0.415	0.25
C	1	#	0.575	0.48	0.25
CC	76	îŝ	0-65	0.54	0 . 25
D.	1	81	0.72	0.6	0.25
Е	\$	11	0.795	0.735	0.25
F	1	11	0.935	0.86	0.25
G	78	Ħ	1.085	0.98	0.25
н	1.0	1 4	1 - 175	1.108	0.25

Dimensions = Inches.

DURAL COUPLING-NIPPLE

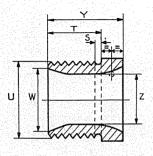
(V.G.S. 538)

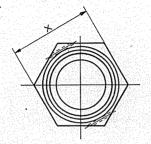

Mark	External Diameter of Pipe	z	Y	x
A	16	₹.	0.145	0.315
В	1	甜	0.208	0.38
BB	16	32	0.252	0.5
C	1	32	0.318	0.5.
CC	15	312	0.377	0.5
\mathbf{D}	<u>1</u>	12	0.438	0.5
E	\$	17	0.575	0.5
F	1	31	0.7	0.5
G	1	#	0.82	0.5
H	1.0	38	0.945	0.5


Dimensions = Inches.

DURAL COUPLING—OUTER SLEEVE

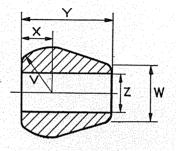
(V.G.S. 436)

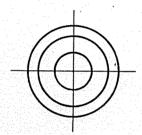

Mark	External Diameter	Z	Y		X	w	v	17	T	S	R
Mark	of Pipe	-	•	Max.	Min.			B.S.P.	• •		
A	it	32	0.7	0.525	0.52	0 :337	0.1	1	0.445	0.465	0.25
В	‡	35	0 83	0.6	0.595	0.451	0.11	ł	0.5	0.6	0.3
вв	ń	11	0.87	0.71	0.705	0 - 533	0.12	19 T.P.I. Whit. Form 0.6 o/d	0 - 53	0.7	0.3
C	8	13	0.91	0.82	0.815	0.589	0:12	3	0.57	0.8	0.4
cc	iš	扯	0.94	0.92	0.915	0.659	0.12	14 T.P.I. Whit. Form 0 75 o/d	0.6	0.9	0.4
D	1	17	0.96	1.01	1.002	0.734	0.12	1	0.62	0.97	0.4
Е	\$	ŝì	1.01	1.1	1.092	0-811	0 12	\$	0.67	1.06	0.45
F	1	2 5	1.06	1.2	1.192	0.95	0.12	1	0.72	1.2	0.45
G	3	39	1.06	1.39	1.382	1.098	0.12	4	0.72	1.37	0.45
н	1.0	1,1,	1.06	1.67	1 - 662	1.193	0.12	1.0	0.72	1.55	0.45


Dimensions = Inche

DURAL COUPLING—INNER SLEEVE

(V.G.S. 537)


	External				X				
Mark	Diameter of Pipe	Z	Y	Max.	Min.	W	U B.S.P.	T	S
A	ı,	13	0.7	0.445	0.44	0.25	1	0.45	0.06
В	1	17	0.7	0.525	0.52	0.345	1	0.5	0.06
ВВ	ik	計	0.75	0.6	0 - 595	0 · 415	19 T.P.I. Whit. Form -6 o/d	0 - 55	0.06
C	1	22	0.82	0.71	0.705	0.483	1	0.57	0.06
CC	76	Ħ	0 -85	0 82	0.815	0.54	14 T.P.I. Whit. Form ·75 o/d	0.6	0.09
D	ł	#	0.87	0.92	0.915	0.605	1	0.62	0.09
Е	1	Ħ	0.92	1 01	1.002	0 .735	1	0 · 67	0.09
F	1	#	0.97	1 · 1	1 092	0.86	1	0 · 72	0.09
G	1	\$7 84	1.0	1.3	1 · 292	0.98	3	0.75	0.1
н	1.0	14	1.0	1 · 39	1.382	1 -108	1.0	0.75	0.1


Dimensions=Inches

DURAL COUPLING-ADAPTOR NIPPLE

(V.G.S. 438)

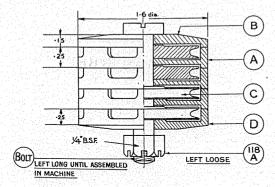
	External	v	w	x		Y	77
• Mark	Diameter of Pipe			1	Max.	Min.	-
A	18	0.134	0 · 145	0.1	0.3	0.29	₹.
В	1	0.2	0.208	0.14	0.4	0.39	łł
ВВ	18	0.24	0 .252	0.17	0.43	0.42	32
С	3	0 .27	0.318	0.19	0.46	0.45	32
CC	76	0.3	0.377	0.21	0.47	0.46	31
D	ł	0.33	0 -438	0.22	0.48	0.47	11
E	â	0.41	0.575	0.29	0.5	0.49	17
P	. 1	0.46	0.7	0.3	0.53	0 52	31 <u>1</u>
G	1	0.57	0.82	0.37	0 · 62	0.6	12
н	1.0	0.61	0.945	0.36	0.56	0.54	38
1 T. S. P. Y. B. P. P. S. P.	The second of the first of the second	1 (2000)	10.00	1.00 C A 20 C	1 17	1.00	L 1 100

Dimensions=Inches

VICKERS

UNIVERSAL PULLEYS AND GUARDS

(Patented)


This pulley unit has been designed to facilitate the running of wires for bomb gear or for other light duties.

The complete unit can be made up to contain from one to twelve pulleys, and has a single fixing bolt.

The pulleys are 1·15 diameter at the bottom of the groove which is suitable for 5 cwt. cable.

The guards permit of the entry and exit of the wire at any convenient angle.

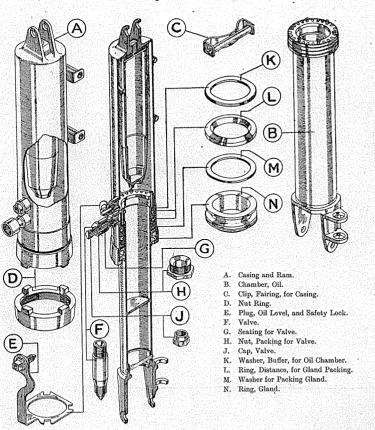
The complete unit is made of Duralumin with the exception of the bolt which is of mild steel.

MARK	KEN,	NUME	BER	OFF	president.	WT.	MARK	1000	NUM	BER	OFF		WT.
Nº.	Α	В	ပ	D	BOLT	ozs	No	Α	В	С	D	BOLT	ozs.
1	-	1	1	1	Z	∙83	7	6	1	7	1	T	3∙58
2	1	1	2	1	Υ	1.3	8	7	1	8	1	S	4-04
3	2	1	3	1	Х	1.75	9	8	1	9	1	R	4.5
4	3	1	4	ı	W	2.2	10	9	1	10	1	Q	5
5	4	Ĵ.	5	1	٧	2.67	11	10	.1.	11	1	Р	5.4
6	5	1	6	1	U	3·13	12	11	1	12	1	0	5.9

Dimensions-Inches

VICKERS OLEO - PNEUMATIC SHOCK ABSORBERS

FOR


UNDERCARRIAGES AND TAIL SKIDS.

VICKERS (PATENT) OLEO-PNEUMATIC SHOCK ABSORBER

FOR AIRCRAFT UNDERCARRIAGE

Component Parts.

VICKERS OLEO-PNEUMATIC UNDERCARRIAGES AND TAIL SKIDS

Plate 1.—Vickers Oleo-Pneumatic Chassis.

As fitted to twin engine machine.

The four oleo units are interchangeable. One unit shown with cowling removed.

All aircraft must have some system of spring suspension to take up landing and taxi-ing shocks. The vertical velocity of a machine on landing may vary from 10 to 20 feet per second and the energy possessed by the machine at these speeds will be considerable. If the machine is brought to rest rapidly, or if, in other words, the travel of the shock absorbing apparatus is short the stresses occasioned in the machine structure will be relatively high due to its rapid deceleration. Spring suspensions of various types have been used in the past, such as steel compression springs, rubber cord in tension, and also rubber blocks in compression; they are all open to the objection that they are heavy when compared with the amount of energy they can take up; they are of relatively large dimensions and for that reason are bad aerodynamically; and, finally, these types do not readily permit of a long travel being given to the landing wheel.

The Vickers system uses compressed air for the resilient medium and all damping is effected by the use of an Oil Brake. The compressed air is retained in a steel chamber and the working piston passes through an oil sealed gland. The construction of the Oleo-Pneumatic Unit will be readily understood by reference to the sectional diagram on Page 54.

The construction is extremely simple, there are few moving parts, and these are constantly lubricated. The main gland is oil sealed and no air can possibly escape at this point; the filling valve is also oil covered, and this valve and the oil level valve are of the needle type and can be depended upon to retain the air indefinitely. The gland on the stem of the filling valve only comes into action during filling or testing operations. In order to obviate the risk which might be attached to the removal of the main gland plug whilst there is still pressure in the air cylinder the oil level valve has been interlocked with this part. It is, therefore, necessary to remove completely the oil level valve before proceeding to dismantle the unit. The working surfaces of the air cylinder and the piston are ground. Initial air pressures have been used varying from 300 to 1,000 lbs. per square inch, so that it

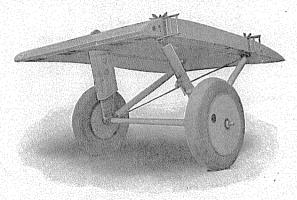


Plate 2.—Vickers Oleo-Pneumatic Chassis.

See Plate 1.

will be readily appreciated how adaptable this unit is. In this connection it is interesting to note that the maximum initial allowable pressures on compression

rubber spring suspension systems is of the order of 250 lbs. per square inch, so that for a given load the cross sectional area of the rubber column must be at least three times that of the piston in the compressed air system. With regard to the principle on which this system works, it will be seen that any inward movement of the piston will compress the air and, since the initial and final volumes of the air are known, the increase of load due to increasing air pressure follows a definite law, and can be illustrated by the accompanying curve, and further, that under these conditions it is practically independent of speed.

By choosing appropriate initial and final air volumes a large degree of lateral stability can be given to the machine when taxi-ing. The piston is always under air load and is always striving to return to its extended position.

JCKERS

When the piston is forced inwards the oil is forcibly ejected by the entry of the Brake Ram and caused to pass into the interior of the air cylinder through the annular orifice. This orifice is of relatively small area and the velocity of the oil through same is very great and consequently gives rise to a high pressure in the chamber with a corresponding retarding effect on the piston. The oil brake converts the excess energy of the landing into heat. This heat appears in the oil and is immediately dissipated by radiation from the exterior of the unit. The amount of energy which the oil brake is called upon to deal with, and the retarding force which it exerts depends upon the speed at which the piston moves. If the piston is pushed

in gently the retarding force of the brake will be negligible. The form of the brake ram is carefully calculated to provide the necessary retarding force as the speed of the machine falls away in coming to rest and may be illustrated by the accompanying diagram. With this combination enormous quantities of energy can be absorbed and dissipated without over-stressing the machine structure. The outward movement of the piston is controlled by an oil dashpot of simple type, which acts as follows:—

As the piston moves inward an annular space is formed between the piston head and the lower part of the cylinder. This space is filled with oil which passes freely through holes in the piston head and around the plate valve, which is suspended from the piston head. When the piston commences to move outward the plate valve closes and traps the oil. The rate of return of the

INTERV SUMMETER

IN OIL SPANS

IN THE STANDARD

STANS ASSOCIATION

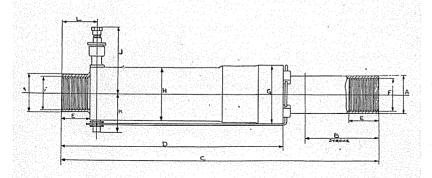
IN THE STANDARD

STANS ASSOCIATION

IN ANY ANY INCIDENCE. OF PISTOR

Maximum load imposed on structure will not usually exceed 1.25 times the mean load.

piston is controlled by allowing the oil to pass back to the air chamber through a small hole in the plate valve. The speed at which the piston returns is sufficiently great to enable the wheels to meet recurring shocks in taxi-ing, but not sufficiently great to cause bouncing. The main gland is self adjusting, and is packed with special rings which are absolutely oil tight. The complete unit can be supplied with end connections to suit customers' requirements, and it is intended that it should be mounted in such a manner that it is only subjected to axial loads. The unit will function satisfactorily in any position from an angle of 45° to the vertical.


These units have been made with pistons ranging from 1" to 3½" dia., and for initial and final loads having a range of between 1 to 3 and 1 to 5. Complete undercarriages embodying these units have been designed and manufactured for a weight as low as 3·5 % of machine fully loaded.

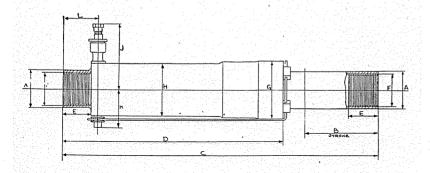
The units for tail skids are generally of similar construction to those described above.

All enquiries for these units should be accompanied by the following information :-

- (a) Total weight of aircraft, fully loaded.
- (b) Number of units per machine.
- (c) Initial load on one unit.
- (d) Maximum permissible load on one unit fully compressed.
- (e) Maximum permissible travel or stroke of plunger.
- (f) Position of unit in undercarriage.
- (q) Vertical landing velocity of machine.
- (h) The number of machines for which units are required.

VICKERS STANDARD OLEO-PNEUMATIC SHOCK ABSORBER UNITS

ENGLISH MEASUREMENTS


T'arma	L	1	$_{\rm L2}$	Energy	Stroke in	Dim. A	В	С	D	Е	F	G	н	J	к	L	Weight
Type No.	Min.	Max.		Energy	Inches	î				"		G.	11		*	"	Unit lbs
153	0	1600		-156×L2	3.0	1.5	3.0	14 · 2	9.9	1 · 0	1½×16	2 · 7	2 · 28	4.2	2 · 1	1 · 4	6.75
156	0	1600		·312×L2	6.0	1.5	6 0	20 2	12.9	1 · 0	1 1 ×16	2 · 7	2 ·28	4 · 2	2 - 1	1 -4	7.5
159	0	1600		-468×L2	9.0	1.5	9.0	26 · 2	15.9	1.0	1 <u>‡</u> ×16	2-7	2 28	4.2	2 · 1	1 4	8 · 25
203	1610	2900		·156×L2	3.0	2.0	3.0	16 05	11 - 7	1 · 5	13×16	3 25	2 · 81	4 · 45	2 · 35	1.9	9.6
206	1610	2900		·312×L2	6.0	2.0	6.0	22 05	14 · 7	1 . 5	13×16	3 25	2 81	4 · 45	2 · 35	1 · 9	11.0
209	1610	2900		·468×L2	9.0	2 · 0	9.0	28 - 05	17 · 7	1 · 5	12×16	3 25	2 · 81	4 45	2 · 35	1.9	12 · 4
2012	1610	2900		·625×L2	12.0	2 0	12 0	34 - 05	20 · 7	1 · 5	13×16	3 25	2 81	4 : 45	2 . 35	1.9	13.8
253	2910	4500		·156×L2	3.0	2 - 5	3.0	17 -55	12 -65	2.0	21×16	4.05	3 · 5	4 · 8	2 · 7	2 · 4	13 2
256	2910	4500		·312×L2	6.0	2 - 5	6.0	23 - 55	15 65	2 · 0	2½×16	4 · 05	3 · 5	4.8	2 . 7	2 4	15 · 35
259	2910	4500		468×L2	9.0	2.5	9.0	29 - 55	18 65	2.0	2½×16	4 05	3 · 5	4 · 8	2.7	$2 \cdot 4$	17.5
2512	2910	4500		·625×L2	12 0	2 5	12 0	35 - 55	21.65	2 0	21×16	4 .05	3 · 5	4 8	2 · 7	2.4	19 - 65
306	4510	6500		·312×L2	6.0	3.0	6.0	24 · 55	16 - 65	2.0	23×16	4 · 55	4 03	5 1	3.0	2 4	23 · 0
309	4510	6500	Below	·468×L2	9.0	3 0	9.0	30 - 55	19.65	2.0	23×16	4 55	4 .03	5 1	3.0	2 · 4	26 · 7
3012	4510	6500	See B	·625×L2	12.0	3.0	12.0	36 - 55	22 -65	2.0	2½×16	4 55	4 .03	5 · 1	3.0	2 4	30 .5
356	6510	8850	Ď,	·312×L2	6.0	3 5	6.0	26 - 5	18-1	2 · 5	3½×12	5 · 35	4.77	5 · 5	3 · 35	2.9	32 · 7
359	6510	8850		·468×L2	9:0	3 - 5	9.0	32 · 5	21 · 1	2 · 5	3½×12	5 35	4.77	5.5	3 · 35	2 9	37 6
3512	6510	8850		·625×L2	12 · 0	3.5	12 0	38 5	24 · 1	2 · 5	3½×12	5 - 35	4 77	5 - 5	3 · 35	2.9	42.5
406	8860	11550		·312×L2	6.0	4.0	6.0	27 - 3	18.9	2.5	3§×12	5 85	5 · 3	5.7	3 - 55	2 9	44.9
409	8860	11550	16	·468×L2	9.0	4.0	9-0	33 - 3	21 · 9	2 5	3§×12	5 . 85	5 · 3	5 7	3 · 55	2.9	49.75
4012	8860	11550		·625×L2	12-0	4.0	12 (39 - 3	24 · 9	2 . 5	3§×12	5 · 85	5 · 3	5 · 7	3 · 55	2 9	54 6
456	11560	14600		312×L2	6.0	4.5	6 (27 . 9	19.5	2 · 5	4·0×12	6 · 4	5.83	5 98	3 - 85	2 9	55 - 5
459	11560	14600		-468×L2	9.0	4.5	9.0	33 · 9	22.5	2 · 5	4·0×12	6.4	5 - 83	5 - 98	3 - 80	2 . 9	61 -0
4512	11560	14600		·625×L2	12 0	4.5	12 (39 - 9	25 · 5	2 5	4 · 0 × 12	6 4	5 8	5 . 98	3 - 85	2 - 9	66 - 5
506	14610	18050		-312×L2	6.0	5.0	6.0	28 · 25	19-8	2 . 5	4½×12	6.9	6 36	6 2	4.8	2 . 9	
509	14610	18050		·468×L2	9.0	5.0	9.0	34 · 25	22 · 8	2 · 5	4½×12	6.9	6 - 30	6 2	4.8	2 · 9	,
5012	14610	18050	120	-625×L2	12:0	5.0	12 0	40 . 25	25.8	2.5	41×12	6 - 9	6 3	6 2	4.8	2.9	

L1 = The range of initial loads in lbs. for which the unit can be used.

L2 = The final load in lbs. which the unit will carry. L2 should not exceed L1×4 and may be as low as L1×3.

Energy = The maximum energy in ft. lbs. which the unit can absorb. This figure can be reduced to meet requirements.

VICKERS STANDARD OLEO-PNEUMATIC SHOCK ABSORBER UNITS

METRIC DATA

Type No.	Ll		L2	Enorgy	A	В	c	D	E	F	G	н	J	к	L	Weight Per Uni
	Min.	Max.	202	Energy	Α.	5	۱	័		*	ĭ	**	. "		·~	kgs.
153	0	725		·048×L2	38 .0	76 0	360	252	25 · 5	30×1·5	68 - 5	58.0	106 · 5	53 5	35 - 5	3 1
156	0	725		·095×L2	38 0	152 · 0	515	328	25 · 5	30×1·5	68 - 5	58 ⋅ 0	106 - 5	53 - 5	35 - 5	3.4
159	0	725		·143×L2	38 0	228 · 0	665	405	25 - 5	30×1·5	68 - 5	58 - 0	106 - 5	53.5	35 · 5	3.74
203	730	1315		·048×L2	50 .8	76 .0	410	299	38 0	45×1·5	82 · 5	71 - 5	113 0	59 - 5	48.0	4 · 36
206	730	1315		·095×L2	50 -8	152 0	560	374	38 0	45×1·5	82 - 5	71 5	113 · 0	59.5	48 0	5.0
209	730	1315		·143×L2	50 -8	228 0	710	450	38 -0	45×1 5	82 · 5	71 - 5	113 · 0	59 ,5	48 · 0	5 · 65
2012	730	1315		·191×L2	50 -8	305 .0	865	525	38 -0	45×1·5	82 5	71 - 5	113 0	59 - 5	48 · 0	6.3
253	1320	2040		-048×L2	63 - 5	76 0	450	320	51 0	55×1·5	103 -0	89 0	122 · 0	68 5	61 0	6.0
256	1320	2040		·095×L2	63 - 5	152 0	600	397	51 · 0	55×1·5	103 · 0	89 .0	122 .0	68 - 5	61 -0	7.0
259	1320	2040		·143×L2	63 - 5	228 0	750	474	51 .0	55×1·5	103 -0	89 - 0	122 0	68 - 5	61 -0	7.95
2512	1320	2040		·191×L2	63 - 5	305 -0	900	550	51 -0	55×1·5	103 -0	89 0	122 0	68 - 5	61 .0	8.9
306	2045	2950		·095×L2	76 - 2	152 0	625	423	51 0	70×1·5	115 - 5	102 - 5	129 5	76 -0	61 0	10.4
309	2045	2950		·143×L2	76 2	228 0	775	500	51 .0	70×1·5	115.5	102 - 5	129 - 5	76 0	61 0	12.1
3012	2045	2950		·191×L2	76 -2	305 0	925	575	51 .0	70×1·5	115 - 5	102 - 5	129 - 5	76.0	61 -0	13.8
356	2955	4010		·095×L2	89 (152 0	675	460	63 - 5	80×2·0	136 -0	121 0	140 .0	85 -0	73 - 5	14.85
359	2955	4010		·143×L2	89 (228.0	825	535	63 - 5	80×2·0	136 0	121 0	140 -0	85 (73 - 5	17.1
3512	2955	4010		·191×L2	89 (305 0	980	612	63 · 5	80×2·0	136 -0	121 0	140 -0	85 (73 - 5	19.3
406	4015	5250		·095×L2	101 -6	152 · 0	695	480	63 5	90×2·0	148 - 5	134 5	145 0	90 .0	73 · E	20 - 4
409	4015	5250		·143×L2	101 -	228 0	845	556	63 - 5	90×2·0	148 - 5	134 - 5	145 0	90 0	73 - 5	22.6
4012	4015	5250		-191×L2	101 -	305-0	1000	632	63 · 5	90×2·0	148 5	134 5	145 0	90.0	73 -	24.8
456	5255	6625		-095×L2	114 -	152 0	710	495	63 - 5	100×2·0	162 - 5	148 0	151 .0	97 - 8	73 -1	25.2
459	5255	6625		·143×L2	114	3 228 0	860	571	63 - 5	100×2·0	162 - 5	148 -0	151 0	97 -	73 -	27.7
4512	5255	6625		-191×L2	114 :	305 0	1010	649	63 - 5	100×2·0	162 - 5	148 (151 -0	97-1	73 -	30.2
506	6630	8200		·095×L2	127 -0	152 0	715	504	63 - 5	115×2·0	175 -0	161 - 5	157 - 5	122 (73 - 6	,
509	6630	8200		·143×L2	127-0	228.0	870	579	63 - 5	115×2·0	175 -0	161 -	157 - 5	122 (73 - (,
5012	6630	8200	1	-191×L2	127 (305 0	1020	655	63 · 5	115×2·0	175 .0	161 - 5	157 - 5	122 (73 - (5

L1 =The range of initial loads in kgs. for which the unit can be used. L2 =The final load in kgs. which the unit will carry. L2 should not exceed $L1 \times 4$ and may be as low as $L1 \times 3$. Energy = The maximum energy in kg. metres which the unit can absorb. This figure can be reduced to meet

VICKERS OLEO-PNEUMATIC CHASSIS

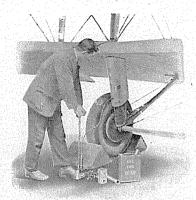


Plate 4.—Vickers Oleo-Pneumatic Chassis. Testing the Air Pressure.

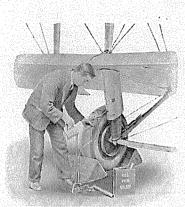


Plate 5.—Replenishing the Oil.

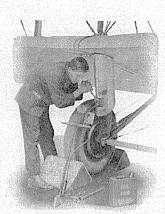


Plate 6.—Checking the Air Pressure after

A light portable hand air pump is available for use in connection with these units.

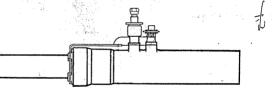
· There is also a manually operated two stage pump of larger capacity for aero-drome use.

These pumps are fully described in pages 65 and 66.

The Vickers Oleo Units are sent out fully charged with oil and air to the pressure stated on instruction plate, and are ready for installation. Attachments can be provided to take a light Duralumin fairing, but the design of the latter is best left to the customer. Some protection should be given to the piston against sand and grit, and this may consist of an extension of the fairing, or may be a light leather gaiter. These units require very little attention in service. There is no possibility of the air escaping if the valves are securely tightened, therefore the only leakage which can take place will be the slight film of oil which serves to lubricate the main gland. It may therefore be necessary to verify the oil level and pressure at periods of say three to four months. This operation is extremely simple when carried out with the special Hand Pump, and should proceed as follows:—

Connect the pump to the filling valve and raise the pressure in the pipe line to the nominal pressure in the air chamber; the filling valve should then be opened by unscrewing same half a turn. The air chamber is now in communication with pipe line and pressure gauge. If the oil level valve is now gently unscrewed, air or oil will be blown through the hole in this valve, and will give an indication of the conditions existing inside the air cylinder. It will probably be necessary to insert a small quantity of oil, and this is readily carried out by pouring a quantity of Vacuum P.924 oil (Machine Gun Oil), into the reservoir at top of pump and continue pumping. When oil commences to flow from the oil level valve it should be firmly closed and pumping continued until the gauge shows that the normal pressure has been reached. The filling valve should then be closed, after which the pump is disconnected. Finally make all valves safe and replace dust cap.

It is essential that the piston be fully extended when the unit is being checked for oil level and air pressure. All units are given a proof test during manufacture, and no attempt should be made to increase the initial air pressure for which the units were designed, and which is stamped on the instruction plate, without consulting the manufacturers.



VICKERS & 616 Cl.
OLEO-PNEUMATIC
UNDERCARRIAGES AND TAIL SKIDS

Patented in
Great Britain, Nos. 568/1915, 11664/1915
and Foreign Countries.

@XZEX20

Explanation of the action of the Gear and the advantages to be derived from its use, together with a few notes on its care and upkeep in service.

£ 100

All communications to be addressed to:

VICKERS (AVIATION) LIMITED

VICKERS HOUSE, BROADWAY, LONDON, S.W.1.

Telephone: VICTORIA 6900.

Telegrams: "VICKERS, SOWEST, LONDON"

Works: WEYBRIDGE, SURREY

Ref.: Oleo/1 (July, 1928).

VICKERS-ARMSTRONGS AUSTRALIA PTY. LTD.
19 OCCURRELL STREET.

SYDNEY.

VICKERS OLEO-PNEUMATIC CHASSIS

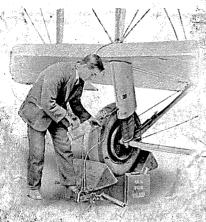


Plate 5.—Replenishing the Oil.

Plate 6.—Checking the Air Pressure after having blown off the excess oil.

VICKERS OLEO-PNEUMATIC TAIL SKID



Plate 7.—As fitted to the Viking Amphibian and machines of Scout type.

In Amphibians the fairing is of copper and acts as a water rudder.

Plate 8.—Fairing removed.

CKERS OLEO-PNEUMATIC UNDERCARRIAGES & TAIL SKIDS

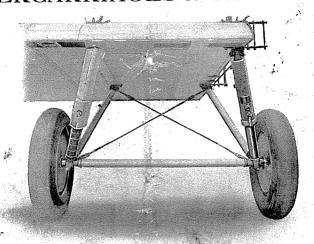


Plate 1.-Vickers Oleo-Pneumatic Chassis.

As fitted to twin engine machine.

The four oleo units are interchangeable. One unit shown with cowling removed.

All aircraft must have some system of spring suspension to take up landing and taxi-ing shocks. The vertical velocity of a machine on landing may vary from 10 to 20 feet per second and the energy possessed by the machine at these speeds will be considerable. If the machine is brought to rest rapidly, or if, in other words, the travel of the shock absorbing apparatus is short the stresses occasioned in the machine structure will be relatively high due to its rapid deceleration. Spring suspensions of various types have been used in the past, such as steel compression springs, rubber cord in tension, and also rubber blocks in compression; they are all open to the objection that they are heavy when compared with the amount of energy they can take up; they are of relatively large dimensions and for that reason are bad aerodynamically; and, finally, these types do not readily permit of a long travel being given to the landing wheel.

The Vickers System uses compressed air for the resilient medium and all damping is effected by the use of an Oil Brake. The compressed air is retained in a steel chamber and the working piston passes through an oil sealed gland. The construction of the Oleo-Pneumatic Unit will be readily understood by reference to the sectional diagram on Page 2.

The construction is extremely simple, there are few moving parts and these are constantly lubricated. The main gland is oil sealed and no air can possibly escape at this point; the filling valve is also oil covered and this valve and the oil level valve are of the needle type and can be depended upon

to retain the air indefinitely. The gland on the stem of the filling valve only comes into action during filling or testing operations. In order to obviate the risk which might be attached to the removal of the main gland plug whilst there is still pressure in the air cylinder the oil level valve has been interlocked with this part. It is, therefore, necessary to completely remove the oil level valve before proceeding to dismantle the unit. The working surfaces of the

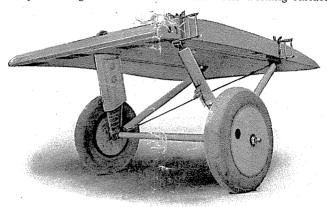
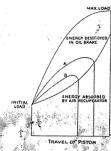


Plate 2.—Vickers Oleo-Pneumatic Chassis.

See Plate One.

air cylinder and the piston are ground. In the illustration (Page 2) the piston is shewn near the limit of its outer and normal position, and the air pressure is such that acting upon the dia. b. of the piston B gives a load slightly in excess of the static load. Initial air pressures have been used varying from 300 to 1,000 lbs. per square inch, so that it will be readily appreciated how adaptable this unit is. In this connection it is interesting to note that the maximum initial allowable pressures on compression rubber spring suspension systems is of the order of 250 lbs. per square inch so that for a given load the cross sectional area of the rubber column must be at least three times that of the piston in the compressed air system. With regard to the principle on which this system works, it will


be seen that any inward movement of the piston B will compress the air and, since the initial and final volumes of the air are known, the increase of load due to increasing air pressure follows a definite law and can be illustrated by the accompanying curve and further that under these conditions it is practically independent of speed.

By choosing appropriate initial and final air volumes a large degree of lateral stability can be given to the machine when taxing. The piston is always under air load and is always striving to return to its extended position.

When the piston B is forced inwards the oil at B1 is forcibly ejected by the entry of the Brake Ram C and caused to pass into the interior of the air cylinder through the annular orifice formed at H. This orifice is of relatively small area and the velocity of the oil through same is very great and consequently

gives rise to a high pressure in the chamber B1 with a corresponding retarding effect on the piston. The oil brake converts the excess energy of the landing into heat. This heat appears in the oil and is immediately dissipated by radiation from the exterior of the unit. The amount of energy which the oil brake is called upon to deal with and the retarding force which it exerts depends

upon the speed at which the piston B moves. If the piston is pushed in gently the retarding force of the brake will be negligible. The form of the brake ram C is carefully calculated to provide the necessary retarding force as the speed of the machine falls away in coming to rest and may be illustrated by the accompanying diagram. With this combination enormous quantities of energy can be absorbed and dissipated without over-stressing the machine structure. The outward movement of the piston is portrolled by an oil dashpot of simple type which acts as follows:—

Maximum load imposed on structure will not usually exceed 1.25 times the mean load.

As the piston B moves inward an amular space is formed between the piston head and the lower part of the cylinder A. This space is filled with oil which passes freely through holes in the piston head and around the plate valve E which is suspended from the piston head. When the piston commences to move outward the plate valve closes and traps the oil.) The rate of return of the piston is controlled by allowing the oil to pass back to the Air Chamber through a small hole in the plate valve. The speed at which the piston returns is sufficiently great to enable the wheels to meet recurring shocks in taxi-ing, but not sufficiently great to cause bouncing. The main gland is self adjusting and is packed with special rings which are absolutely oil tight. The complete unit can be supplied with end connections to suit customer's requirements and it is intended that it should be mounted in such a manner that it is only subjected to axial loads. The unit will function satisfactorily in any position from an angle of 45° to the vertical.

These units have been made with pistons ranging from 1" to $3\frac{1}{2}$ " dia. and for initial and final loads having a range of between 1 to 3 and 1 to 5. Complete undercarriages embodying these units have been designed and manufactured for a weight as low as 3.5% of machine fully loaded.

The units for tail skids are generally of similar construction to those described above.

All enquiries for these units should be accompanied by the following information:—

Total weight of aircraft, fully loaded.
Number of units per machine.
Initial load on one unit.
Maximum permissible load on one unit fully compressed.
Maximum permissible travel or stroke of plunger.
Position of unit in undercarriage.
Vertical landing velocity of machine.

A light portable hand air pump is available for use in connection with these units.

There is also a manually operated two stage pump of larger capacity for aerodrome use.

These pumps are both fully described in our Accessory Catalogue, pages

The Vickers Oleo Units are sent outfully charged with oil and air to the pressure stated on instruction plate and are ready for installation. Attachments can be provided to take a light duralumin fairing, but the design of the latter is best left to the customer. Some protection should be given to the piston against sand and grit and this may consist of an extension of the fairing or may be a light leather gaiter. These units require very little attention in service. There is no possibility of the air escaping if the valves are securely tightened, therefore the only leakage which can take place will be the slight film of oil which serves to lubricate the mail gland. It may therefore be necessary to verify the oil level and pressure at periods of say three to four months. This operation is extremely simple when carried out with the special Hand Pump and should proceed as follows:-

Connect the pump to the filling valve and raise the pressure in the pipe line to the nominal pressure in the air chamber; the filling valve should then be opened by unscrewing same half a turn. The air chamber is now in communication with pipe line and pressure gauge. If the oil level valve is now gently unscrewed air or oil will be blown through the hole in this valve and will give an indication of the conditions existing inside the air cylinder. It will probably be necessary to insert a small quantity of oil and this is readily carried out by pouring a quantity of Vacuum P.924 Oil (Machine Gun Oil), into the reservoir at top of pump and continue pumping. When oil commences to flow from the oil level valve it should be firmly closed and pumping continued until the gauge shows that the normal pressure has been reached. The filling valve should then be closed after which the pump is disconnected. Finally make all valves safe and replace dust cap

It is essential that the piston B be fully extended when the unit is being checked for oil level and air pressure. All units are given a proof test during manufacture and no attempt should be made to increase the initial air pressure for which the units were designed, and which is stamped on the instruction plate, without consulting the manufacturers.

VICKERS OLEO-PNEUMATIC CHASSIS

COMPONENT PARTS. (See Plate 3)

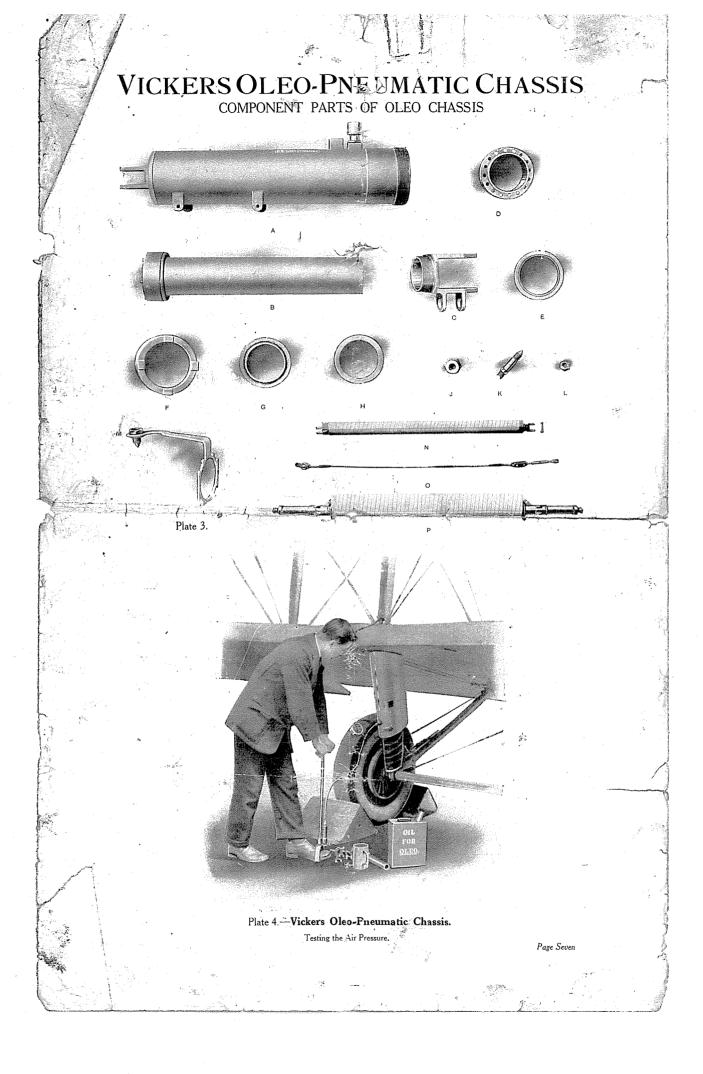
AIR CYLINDER SUPPORTING RAM.

Fork for Do. Fits over axle and connects Radius Rod.

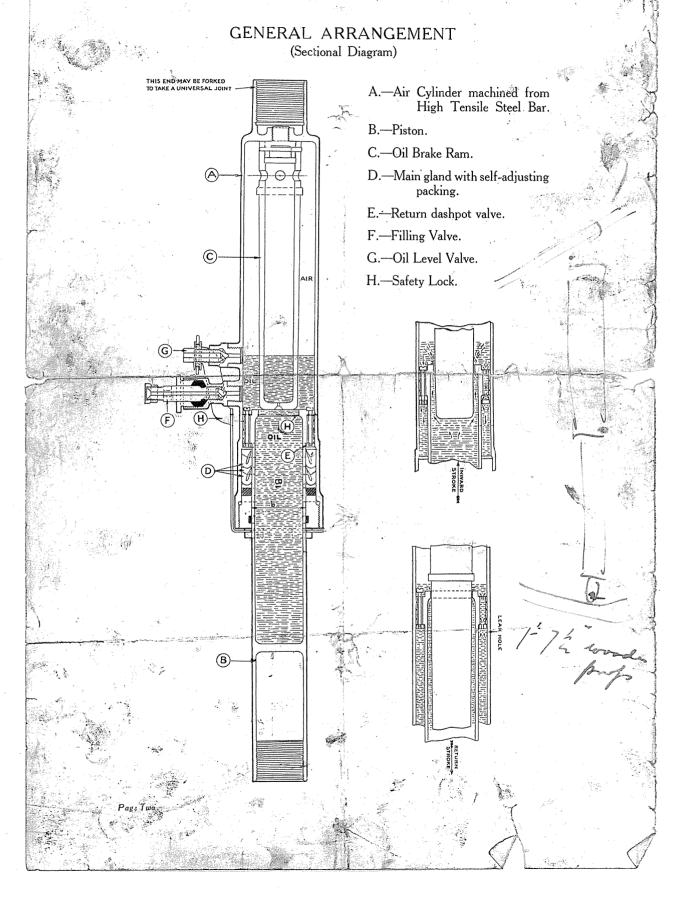
-Neck Ring of Gland. G & H.—Packing Rings. —Gland Cap.

-Safety Lock

GLAND NUT (Valve).

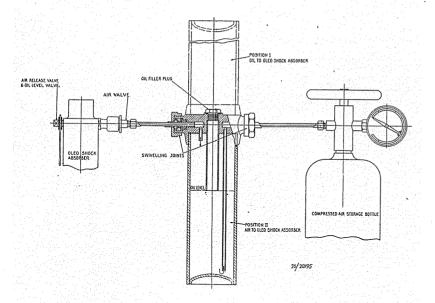

NEEDLE VALVE. DUST CAP.

-OIL LEVEL PLUG.


RADIUS ROD, with swivel fork.

BRACING CABLE, with turnbuckle, deadeyes and plates.

AXLE, complete with universal sleeves, caps and screwdown greasers.


VICKERS OLEO-PNEUMATIC SHOCK ABSORBER

VICKERS OLEO PNEUMATIC SHOCK ABSORBERS

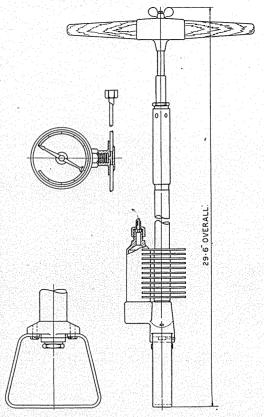
Method of replenishing air and oil by the use of a standard compressed air bottle in lieu of a pump.

Having connected the device as shown in the diagram, a measured quantity of oil is inserted in the swivelling chamber and the plug is secured. By inverting the chamber and opening the Stop Valve on the Air Reservoir the oil in the swivelling chamber will be forced into the shock absorber cylinder; the air pressure can then be raised to the desired figure, after which the air valve on the shock absorber may be screwed home and the gear dismantled.

VICKERS HIGH PRESSURE AIR PUMP

Single Acting
Single Stage
A 599

This pump has been specially developed for charging the reservoirs of Oleo Pneumatic Shock Absorber Units, and can be used for pressures up to 800 lbs. per square inch.


It is very compact and relatively light, and can be carried on aircraft for emergency use.

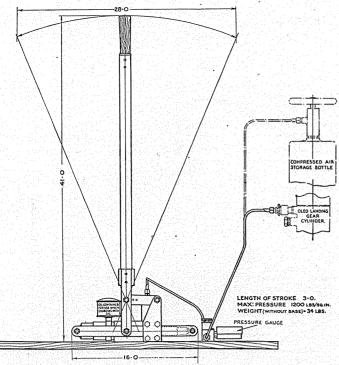
The delivery valve is of Immaculate Steel (Rustless) hardened and ground.

The piston packing is of 'special design and can be adjusted for wear by a wing nut on handle.

The body of the pump is air cooled and an oil seal is fitted above delivery valve.

Lubrication of the piston is carried out by compelling the entering air to pass through an oil-saturated cotton wick.

The pump can also be used to inject small quantities of oil which are poured into the barrel after the plunger has been withdrawn.


A connecting pipe and pressure gauge are supplied.

WEIGHT.-6 lbs. complete.

VICKERS HIGH PRESSURE AIR PUMP

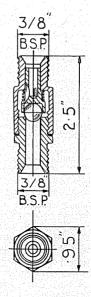
Two Stage (Aerodrome Type) A 219

This pump is for use in connection with the air and oil replenishment of Oleo Pneumatic Shock Absorbers and is for aerodrome use.

The compression is carried out in two stages which gives high efficiency and enables air pressures up to 1,200 lbs. per square inch to be easily obtained.

The whole unit is mounted on a wood base which also carries the pressure gauge. The operating lever is conveniently placed for use by one or two mechanics:

The valves are of Vickers Immaculate Steel (Rustless), hardened and ground, and can be readily removed for inspection.


WEIGHT .- 34 lbs. without base.

VICKERS 3" NON-RETURN VALVE

FOR COMPRESSED AIR MAINS

A 608

This non-return Valve should be inserted in the Pipe Line between the Hand Air Compressor A594 (see page 68) and the Air Reservoir as an additional safeguard against loss of air.

VICKERS DUPLEX AIR COMPRESSOR

TO GIVE PRESSURES UP TO 200 LBS. PER SQ. INCH FOR ENGINE STARTING

A 594

The difficulties and uncertainties encountered in starting the average aero engine by direct cranking, are too well known to need elaboration. The trend towards high powers and the inaccessibility of some engines, adds to these difficulties.

Starting by means of compressed carburetted air is a great advance over the earlier method and the use of a motor driven air compressor (ground equipment) makes engine starting the certainty it should be.

This essential ground equipment is not always available in the case of forced landings, and in any case, it is advisable to have the aircraft so equipped that it is independent of outside aid, provided this can be done for a reasonable addition of weight.

The Vickers Hand Air Compressor takes over the duties of the motor pump and weighs $9\frac{3}{4}$ lbs. It is a very compact unit and can be mounted in any position convenient for operation.

The disposition of the twin cylinders and the mechanical action adopted enables the load on the hand lever to be kept within reasonable limits at all times.

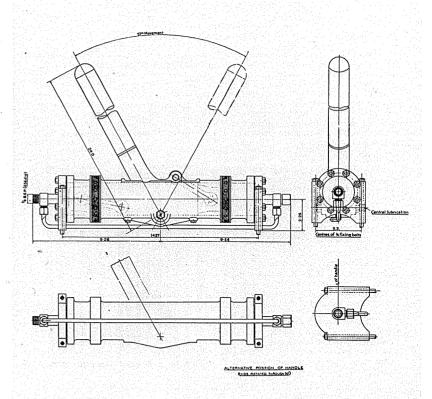
The pump throughout is made from light alloy eastings and forgings and has steel cylinder liners so that the initial high efficiency may be maintained.

In order to reduce the number of parts and to secure absolute reliability in action, the usual inlet valves have been replaced by ports cut in the cylinder barrel. These ports are uncovered by the piston at the end of the suction stroke.

The only valves necessary therefore, are the discharge valves which are of the duplex ball type and are mounted in the discharge branch of the end covers.

The provision of two discharge valves per cylinder independently operated, in series, makes for absolute reliability of action.

The lubrication of all the working parts takes place through the main axis bolt, the crank and connecting rods being suitably drilled.


The inlet ports are protected by gauze covers and the exposed working parts are protected by a Willesden canvas cover.

This Pump is guaranteed to raise the air pressure in a standard air bottle of 390 cubic inches, from 0 to 200 lbs. per sq. inch, in 10 minutes, when operated by two men, working alternately.

When only one man operates the pump, the times are as follows:—100 lbs. per sq. inch in 3 to 4 minutes, and 200 lbs. per sq. inch in 12 to 14 minutes.

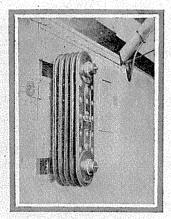
An engine of approximately 500 horsepower usually can be started when the pressure reaches 75 lbs. per square inch; thus, 4 to 5 starts should be obtainable with one charge of the air bottle when charged to 200 lbs. per sq. inch.

FOR AIRCRAFT

(Oil Cooler, Standard, Air Ministry Type A 325)

(English Patent No. 285,524 (25040/26)

(FOREIGN PATENTS APPLIED FOR)


1. PURPOSE.

Owing to the high powers developed by modern aero engines and the necessity for cowling as much of the engine as possible, the heat which is imparted to the lubricating oil in its journey through the engine cannot be readily radiated from the crankcase. It then becomes necessary to adopt other means for reducing the temperature of the oil before it is returned to the engine. The best method of doing this is to insert a special oil cooler in the pipe line between the engine scavenger pump and the tank. The Vickers-Potts Oil Cooler, having comparatively low aero-dynamic resistance, can be placed in the slipstream of the air screw or other convenient place. It is used largely in aircraft for the British Royal Air Force, and in foreign countries.

2. CONSTRUCTION.

The Vickers-Potts Oil Cooler consists of a series of hollow fins threaded on two tubes and arranged for series flow, i.e., through each fin or element in turn. A by-pass valve is inserted between the inlet and outlet pipes, to provide an alternative path for the oil when starting from cold, and to prevent excessive pressures on the fins.

The internal construction of the cooling element is such that the oil is exposed in thin layers to the cold surface of the fins; also, the spacers between the fins break up the flow of the oil by eddying, and thus cause rapid transfer of heat. The external space between the fins, which space is increased by the local flattening of the latter, enables the air to pass freely between them without causing undue drag (air resistance). (See H.P. drag figures, para 7.)

The general arrangement, with dimensions, of Vickers-Potts Oil Cooler is shewn on pages 72 and 73.

3. CAPACITY.

The cooling surface per fin is approximately 145 square inches (930 square cms.), and the reduction of temperature of the oil in passing through one fin will be from 1° to 6° C., according to the rate of flow and the temperature of the air.

The Vickers-Potts Oil Cooler can be supplied with from 3 to 13 fins, to suit all engines from 250 to 800 horse-power, working under various conditions, and to permit of the oil being returned to the engine at a temperature of 70° C. Larger engines may have two coolers in series.

The rate of flow of oil through cooler at various pressures and temperatures is shown on page 78.

The most suitable unit for any installation can be indicated and quoted for on receipt of the following particulars:—

- (a) Horse-power of engine.
- (b) Extent to which engine is enclosed by cowling.
- (c) Quantity of oil delivered by pump in gallons per minute or litres per minute.
- (d) Velocity of air over cooler.

4. INSTALLATION.

The unit may be mounted in any suitable position near the engine, and can be arranged so that the air flow is along either the major or minor axis of the fins.

The installation of cooler on an aircraft fitted with "Jupiter" air-cooled engine is illustrated on page 70.

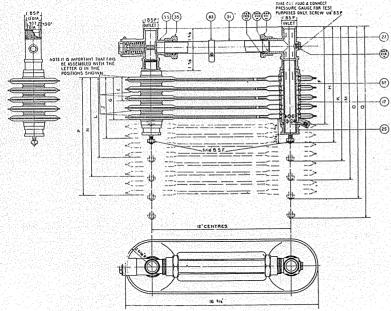
5 TESTS

Each Vickers-Potts Oil Cooler is subjected on completion to an internal test pressure of 25 lbs. per square inch (1.75 kgms. per square cm.).

6. WEIGHTS.

Weights, complete—3 fin unit 8·5 lbs. (3·85 kgs.)
5 ,, ,, 9·75 ,, (4·4 ,,)
7 ,, 11·75 ,, (5·3 ,,)
9 ,, ,, 14 ,, (6·35 ,,)
11 ,, ,, 16·5 ,, (7·5 ,,)
13 ,, ,, 20·25 ,, (9·6 ,,)

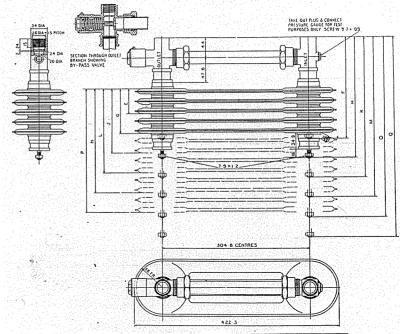
7. AIR RESISTANCE.


Drag of Vickers-Potts Oil Cooler at 100 m.p.h., with air flow along major axis of fins, expressed as horse-power:—

5 fin unit, 1·16 h.p.
7 ,, ,, 1·46 ,,
9 ,, ,, 1·79 ,,
11 ,, ,, 2·1 ,,

FOR AIRCRAFT

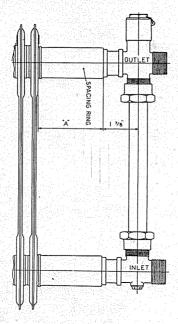
(Oil Cooler, Standard, Air Ministry Type A 325)


Mark 3	Oil Cooler with 3 Fins & Relief Valve	Dim. E-1 ¾"	Dim. F-8 5
5	, , 5 , , , ,	"G-3%"	" H-9] "
7	., , 7 ,, , , ,	" J-55"	" K-11 <u>11</u> "
9	,, ,, 9 ,, ,, ,,	" L-6}"	" M-12 15"
11	"""n""""""""""""""""""""""""""""""""""	" N-8 ll."	,, O-1417"
13	., ., 13 ,, ., .,	" P-91§"	" Q-16 <u>1</u> "

Cooler Tested to 25 lbs. per sq. inch. Relief Valve set to By-pass at 15 lbs. per sq. inch.

VICKERS-POTTS OIL COOLER—continued .

METRIC DIMENSIONS.


Mark 3	Oil Cooler with 3 Fins & Relief Valve	Dim. E-50	Dim, F-207·1
5	,, 5 ,,	" G-90·5	" H-247·6
7	,, 7,, ,, ,,	" J–131	" K-288·1
9	., ,, 9 ,, ,, ,,	" L–171 · 4	,, M-328⋅6
11	, 11 , , ,	" N-220 6	" O-369
13	,, ,, 13 ,, ,, ,,	" P-252·4	" Q-409·5

Cooler Tested to 1.76 kgs./cm² Relief Valve set to By-pass at 1.05 kgs./cm²,

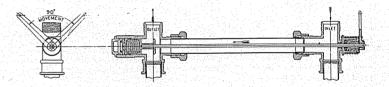
FITTED WITH SPECIAL SPACING RINGS A325.

A325 Mark No.	Length Mark of Tube	No. of Fins	Spacing Ring required
3/5	5	3	Pt. 89-A325
3/7	7	3	Pt. 93-A325
5/7	7	5	Pt. 89-A325
5/9	9	5	Pt. 93-A325
7/9	9	7	Pt. 89-A325
7/11	11	7	Pt. 93-A325
9/11	- 11	9	Pt. 89-A325
9/13	13	9	Pt. 93-A325

Description	" A " Dim.	Part No.
2 Element Spacing Ring	2}"	89-A325
4 Element Spacing Ring	3}*	93-A325

In the mounting of the cooler, occasions sometimes arise in which the inner fins are brought very close to the cowling with a great loss in cooling. To overcome this difficulty coolers can be supplied in which 2 or 4 of the inner fins are replaced by a distance piece.

Existing coolers of standard type can be readily converted by the use of these spacers and longer main tubes.



VICKERS

OIL COOLER VALVE LIFTING GEAR

VARIABLE CONTROL

SCHEME "В"

Whilst an oil cooler is an admitted necessity in modern aircraft with high powered engines there are times when it is necessary that it should be short circuited, e.g., when flying at high altitudes and during the initial "warming up" of the engine on the ground. To enable the oil cooler to be cut out at will, two schemes (A and B) have been developed. In scheme "A" (which is adjusted on the ground before flight) the bypass valve is opened by a rod inserted in the cross connecting bypass tube. The amount of valve opening and the consequent relative flow through the cooler and through the bypass is determined by the length of the rod.

In Scheme "B" similar means are provided for opening the bypass valve, but the control can be operated at any time even during flight, the amount of opening being capable of fine control between minimum and maximum.

This method of control is readily adapted to existing coolers.

(Oil Cooler, Standard, Air Ministry Type A 325)

INSTRUCTIONS FOR ASSEMBLING.

This Cooler consists of a number of fins assembled on two parallel tubes, and so arranged that the flow of oil takes place through the fins in series. This series flow is ensured by the special openings in the fins and the manner in which they are assembled. Inspection of the sectional drawing A.325 on page 72 will show that the entering oil passes along the central tube and emerges from a series of holes into the first fin, then along the fin, and at the other end the oil leaves on the opposite side of fin and passes along the second and so on, finally leaving the last fin and passing into the outlet tube. In order to ensure that the fins are correctly assembled on the central tubes and to assist the inspection of the finished article, a letter O is embossed at one end of each fin on the side corresponding to the large opening or transfer port.

If a complete cooler is placed with the central tubes vertical and the inlet and outlet connections on top, and if the fins are examined at the outlet end, the embossed O will appear as follows:—

Top fin	O on top
Second fin	,, ,, bottom
Third	", top. Mark 3
Fourth	,, ,, bottom
Fifth	", " top. Mark 5
Sixth	", " bottom
Seventh	", " top. Mark 7
Eighth	", " bottom
Ninth	", " top. Mark 9
Tenth	,, ,, bottom
Eleventh	top. Mark 11

T

The correct order of the fins is important. If a fin is incorrectly assembled there will be a serious restriction of the oil flow.

When the fins are assembled on the central tubes, it is important to observe that the duralumin spacers are central before finally tightening the end nuts. When a new group of Fins is about to be assembled, it is advisable to clamp them together with the special steel bolts supplied. The use of these bolts allows of a greater load being applied than could safely be obtained with the light steel tubes, and the parts being thoroughly bedded together will make a good joint on final assembly.

In order to safeguard the fins against excessive oil pressures when starting up on cold oil, a Relief Valve is fitted between the inlet and outlet pipes to bypass the oil when the pressure in the inlet pipe exceeds 15 lbs. per sq. inch (fins are tested to 25 lbs. per sq. inch).

VICKERS-POTTS OIL COOLER—continued

(For reference numbers see drawing on page 72).

ASSEMBLY

The recommended method of assembly is as follows:-

The various components are collected in accordance with Schedule for the size of cooler it is proposed to build. The cap nuts 25 are screwed on the tubes 57 etc., leaving say one or two turns for final tightening and the various fins and spacers are slipped on in the order shown on drawing and finally the inlet and outlet connections 27 and 33 are screwed on, before 33 is brought in line with 27 the bypass tube 31 should be inserted, the nuts 35 and A.G.S.711-H and collar A.G.S.709-H having previously been assembled in order shown.

The olive A.G.S.713-H is now inserted in the bellmouthed end of tube and the whole is swung into line to engage with 27. The nut A.G.S.711-H is now screwed up and the gland formed between 35 and 33 is packed by coiling several turns of asbestos graphite packing round the tube 31; the nut 35 may then be screwed on. (See note re use of special steel bolts).

The Relief Valve operates inside the outlet connection 33 and is supplied set and sealed and does not call for any adjustment.

TESTING.

The only tests necessary on the completion of the cooler are :-

(a) FLOW TEST.

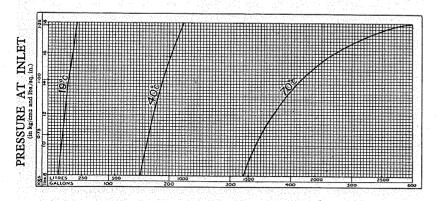
The cooler should be connected to a tank containing Hot Oil which should be allowed to flow freely through the cooler entering at the inlet and the temperature of the fins should increase in turn commencing with the fin furthest from the inlet and outlet connections; this will prove that there are no restrictions and that the fins are assembled in the correct order.

(b) PRESSURE TEST.

The outlet end of cooler should now be closed with the special plug and nut provided and the pressure in the tank supplying the Hot Oil should be increased to 25 lbs. per sq. inch. The exterior of the cooler should be wiped clean and an inspection made for leaks; any leakage between the fins and spacers can be remedied by tightening nuts 25 after oil pressure has been released. It is unlikely that any faults will be found in the fins as they are tested during manufacture, but should any suffer slight damage they can be made good by soft soldering or the fin can be replaced.

The tag on clip 83 is provided for the final stamp of the inspector.

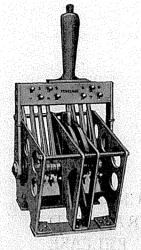
Should it be necessary at any time to add two elements to an existing cooler it will be necessary to change the central tubes to the next size and to add the additional fins with the indicating O in the positions called for on table. Each additional fin will require two spacers 17.


Should it be necessary at any time to verify the freedom of the relief valve this can be done by unscrewing the plug A.G.S.216-A. on 27 and inserting a length of \mathfrak{f}^r rod when the valve can be eased from its seat.

(Oil Cooler, Standard, Air Ministry Type A 325)

Flow Test through 5 Fins in Series

Oil (Castrol R) at various temperatures and sustained inlet pressures


FLOW PER HOUR (in Litres and Gallons)

VICKERS CENTRALIZED BOMB RELEASE CONTROL

(English Patent No. 300,218)

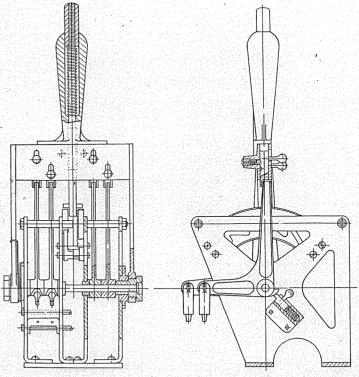
VICKERS CENTRALIZED BOMB RELEASE CONTROL

(English Patent No. 300,218)

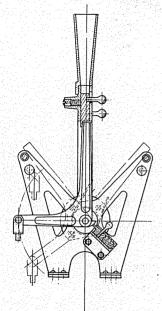
The congestion in the pilot's and observer's cockpits of modern aircraft, due to the installation of ever-increasing quantities of various types of gear, has made it imperative to produce a special type of bomb release control.

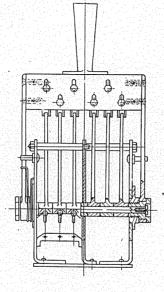
The new type of Vickers Centralized Control embodies many novel and distinctly advantageous features over the older patterns, in that:—

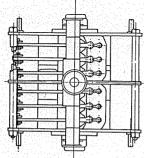
- (1) It is very compact and enables any number of Bomb Cables to be localised in a minimum of space, and the bombs to be released by means of one control handle.
- (2) The bomber is enabled to select and release any single bomb, or alternatively any number of bombs in salvo, without unduly diverting his attention from his sighting apparatus.
- (3) The release "pull" is reduced to a minimum.
- (4) It is so designed that the bomber is enabled readily to ascertain the number and types of bombs already released.


The following combinations are in production, and others can be readily made up to customer's requirements:—

D 33		and State (286)			مرده والمراوية	
REF. N	10.	1)T	SCRIPT	IOM:		WEIGHT.
						AA ETCHI.
A.615		Fo	ur-Way			11
					2	lbs. 8 ozs
A.389		Six				
1 100			, ,,		0	22
A.402		Ric	ght- ,,		• 9	
300 100 9 64-19-03			,,,			11


The "Light Release" Control, included in the following, is for dropping bombs from the "Light Series" Rack, which carries four practice bombs or, alternatively, 20 lb. high explosive bombs.


Ref. No.	DESCRIPTION. WEI	GHT.
A.602	Four-Way and Light Release 3 lbs.	14 ozs.
A.388	Six- ,, ,, ,, 3 ,,	6 ,,
A.366	Seven-,, ,, ,, 4 ,,	9


Vickers Centralized Bomb Release Control (4-way Type, with "Light Release"—A.602)

Vickers Centralized Bomb Release Control (6-way Type—A.389)

Quotations will be submitted on receipt of enquiries, which should mention the types and quantities required and the type of bomb carrier in use.

VICKERS STREAMLINE WIRES AND SWAGED TIERODS

WITH FORKED ENDS

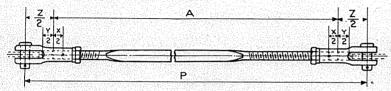
Specialising in the production of streamline wires and swaged tierods, we can supply these in any specified lengths, dimensions and other conditions laid down by the British Engineering Standards Association. Special wires will be quoted for upon receipt of full particulars of sizes, lengths, quantities etc., required.

Anti-coerosion Coating. All finished wires and fork ends are cadmium coated by an approved process, coating being no thicker than 0.0005 inch.

All wires are marked with Specification and Part Number, together with the approved inspection stamp.

i.e., a 2 B.A. wire 54.5" long will be marked, 5 W. 3—112/54.5".

Wires to millimetres sizes having the same sections can be made to order.


5 W. 3. January, 1928.

(Cancelling B.S. Specification 4 W. 3.)

FINISHED STREAMLINE WIRES

(SCREWED)

NOTE.—When ordering finished streamline wires, only the Specification Number, Part Number, and the required Overall Length to the nearest even half inch should be guoted. (If the calculated length "A" (see sketch) be not an even inch or half-inch, then the nearest half-inch above "A" should be quoted).

 $A = P \cdot Z$.

Where P == Calculated Pin Centres.

and Z = Figure shewn in Table below for the respective sizes of Wire.

VALUE Z.
For Plain Forks to B.S. Specification 2 SP. 3.

Size of Wire	z	Size of Wire	Z
4 B.A.	in. 1 · 07	∰ in. B.S.F.	in. 2·09
2 B.A.	1:31 1:58 1:55] in. ,,]} in. ,,]; in. ,,	2 · 33 2 · 67 2 · 81
∯ in. " ∯ in. "	1 · 85 2 · 04	⅓ in. ,, ½ in. ,,	3·00 3·12

The Figures for the Maximum "Outward" and "Inward" adjustment (X and Y), which correspond with the above values for Z, are given in the following Table:—

Type of End Fitting	Ad- just- ment	4 B.A.	2 B.A.	¼ in. B.S.F.	↓ in. B.S.F.	⅓ in. B.S.F.	å in. B.S.F.	‼ in. B.S.F.	₹ in. B.S.F.	∰ in. B.S.F.	⅓ in. B.S.F.	∰ in. B.S.F.	in. B.S.F.
Plain Forks to	x	in.	41.57	in.	320 FBP		1 10 10 11	1000			427.47	1000	Transport (F
B.S. Speci fication	(=Y)	0.53	0.59	0.72	0.65	0.75	0.76	0.81	0 .87	0.93	0.99	1.00	0.98
2 SP. 3													

Abstructed by permission of the British Engineering Standards Association from B.S. Specification 5 W. 3., official copies of which can be obtained from the Secretary of the Association, 28, Victoria Street, Westminster, S.W.1, price 8d., post free.

5 W. 3. January, 1928.

(Cancelling B.S. Specification 4 W. 3.)

STREAMLINE WIRES-contd.

EXAMPLES ;-

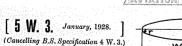
(1) Suppose that for a $\frac{1}{4}$ inch wire the calculated length "A" = $61 \cdot 1$ inches.

The finished length "A" to the nearest half-inch above is $61 \cdot 5$ inches, and

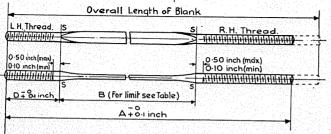
"B.S. Specification 5 W. 3, Part No. 314, 'A' 61 .5 in."

(2) Suppose that for a $\frac{1}{4\pi}$ inch wire $A = 52 \cdot 0$ inches.

as the finished length thus :-


should be ordered thus :-

As this length is not between an even inch or half-inch it may be quoted


" B.S. Specification 5 W. 3, Part No. 512, ' A ' 52 0 in."

Abstracted by permission of the British Engineering Standards Association from B.S. Specification 5 W. 3, official copies of which can be obtained from the Secretary of the Association, 28, Victoria Street, Westminster, S.W.1, price 8d., post free.

STREAMLINE WIRES-contd

Note.—The term "shoulder" is used to define the point S at which the section of the round end begins to change to the oval shape of the blade.

SCHEDULE.

Size: 4 B.A. Ultimate Tensile Strength: 1,050 lb. Thread: No. 4 B.A. D = 1.5 inches.

Oval: W = 0.192 inch (min.); T = 0.048 inch (min.); R = 0.288 inch; r = 0.011 inch.

Area of Oval = 0.0071 sq. inch (min.); 0.0085 sq. inch (max.).

Part No.		Overall Length	For "A'	'Lengths veen	Part No.	В	Overall Length	For "A" Lengths between	
	(with Limits)	ith Limits) of Blank Min. Max.		(With Limits)	of Blank	Min.	Max.		
	Inches	Inches	Inches	Inches	2 ⁽¹²⁾ 2 ²	Inches	Inches	Inches	Inches
1	3.5]+0	10.5	7	10.5	28	111 PS	118-5	115	118 · 5
2	1.0 > 0"	14.5	11	14.5	29	115.5 (+0	122.5	119	122 5
3	11.0	18.5	15	18.5	30	119.5 [-2.0	126.5	123	126 5
4	15.5	22.5	19	22.5	31	100.55	130.5	127	130 - 5
5	10.0	26.5	23	26.5	32	197.8 し十0	134.5	131	134.5
6	23.5	30.5	27	30.5	33	131.5 (-2.0	138.5	135	138.5
7	27.5 31.5 +0	34 5	31	34.5	34	195.5	142.5	139	142.5
8	OT O' WE	38.5	35	38.5	35	120.5 (+0	146.5	143	146 5
9	30.0	42.5	39	42.5	36	143.5 -2.0	150.5	147	150 5
10	$\frac{39.5}{43.5}$ \(\frac{1}{2} + 0\)	46.5	43	46.5	37		154.5	151	154 5
11	2000	50.5	47	50 5	38	151.5 (-0	158.5	155	158.5
12	T. T. O. J.	54.5	51	54.5	39	155.5 -2.0	162.5	159	162.5
13	51.5 +0	58-5	55	58.5	40	150.55	166.5	163	166 - 5
14	20.0 7 3 04	62.5	59	62 - 5	41	100 5 (+0	170.5	167	170-5
15	99.0	66.5	63	66 - 5	42	167.5 -2.0	174.5	171	174.5
16	$63.5 \\ 67.5 \\ +0$	70.5	67	70-5	43	301 65	178.5	175	178.5
17	0,00	74.5	71	74.5	44	175.5 (十0	182 5	179	182.5
18	71 0 J	78.5	75	78.5	45	179.5 -2.0	186 - 5	183	186 - 5
19	$75.5 \\ 70.5 \\ +0$	82.5	79	82.5	46	189.55	190 5	187	190.5
20	100 6 1 00	86.5	83	86 - 5	47	100 E 1 + U	194.5	191	194.5
21	00'0]	90 - 5	87	90.5	48	191.5 -2.0	198-5	195	198.5
22	$87.5 \\ 01.5 \\ +0$	94 5	91	94.5	49	105.65	202.5	199	202 - 5
23		98 5	95	98.5	50	100 5 1 +0	206 - 5	203	206 - 5
24	00.01	102 5	99	102 - 5	51	203.5 -2.0	210.5	207	210.5
25	99.5 +0	106.5	103	106.5	52	907.55	214.5	211	214.5
26		110.5	107	110.5	53	011 6 +0	218.5	215	218.5
27	107.5	114.5	111	114.5	54	215.5	222.5	219	222 5

Abstracted by permission of the British Engineering Standards Association from B.S. Specification 5 W. 3, official copies of which can be obtained from the Secretary of the Association, 28, Victoria Street, Festiminster, S.W. 1, price 8d., post free.

STREAMLINE WIRES—contd.

5 W 3 January, 1928.

(Cancelling B.S. Specification 4 W. 3.)

Size: 2 B.A.

Ultimate Tensile Strength: 1,900 lb.

Thread: 2 B.A. D = 1.6 inches.

Oval: W = 0.256 inch (min.); T = 0.064 inch (min.); R = 0.384 inch; r = 0.014 inch. Area of Oval = 0.0126 sq. inch (min.); 0.0142 sq. inch (max.).

Part No.	В	Overall Length	For "A" betw	Lengths een	Part No.	В	Overall Length	For "A'	' Lengths veen
2.73	(With Limits)	of Blank	Min.	Max.		(With Limits)	of Blank	Min.	Max.
101 102 103	$ \begin{array}{c} \text{Inches} \\ 3 \cdot 5 \\ 7 \cdot 5 \\ 11 \cdot 5 \end{array} + 0 $	Inches 10.5 14.5 18.5	Inches 7 11 15	Inches 10.5 14.5 18.5	128 129 130	$ \begin{array}{c} \text{Inches} \\ 111 \cdot 5 \\ 115 \cdot 5 \\ 119 \cdot 5 \end{array} + 0 \\ -2 \cdot 0 $	Inches 118.5 122.5 126.5	Inches 115 119 123	Inches 118 · 5 122 · 5 126 · 5
104 105 106	$\begin{array}{c} 15.5 \\ 19.5 \\ 23.5 \end{array} \right\} \begin{array}{c} +0 \\5 \end{array}$	22 · 5 26 · 5 30 · 5	19 23 27	22·5 26·5 30·5	131 132 133	$\begin{bmatrix} 123.5 \\ 127.5 \\ 131.5 \end{bmatrix} + 0 \\ -2.0$	130 · 5 134 · 5 138 · 5	127 131 135	130 · 5 134 · 5 138 · 5
107 108 109	$\begin{array}{c} 27.5 \\ 31.5 \\ 35.5 \end{array} \right\} \begin{array}{c} +0 \\75 \end{array}$	34·5 38·5 42·5	31 35 39	34·5 38·5 42·5	134 135 136	$\begin{bmatrix} 135.5 \\ 139.5 \\ 143.5 \end{bmatrix} + 0 \\ -2.0$	142 · 5 146 · 5 150 · 5	139 143 147	142·5 146·5 150·5
110 111 112	$ \begin{array}{c} 39.5 \\ 43.5 \\ 47.5 \end{array} \right\} \begin{array}{c} +0 \\ -1.0 \end{array} $	46 · 5 50 · 5 54 · 5	43 47 51	46·5 50·5 54·5	137 138 139	$\begin{bmatrix} 147.5 \\ 151.5 \\ 155.5 \end{bmatrix} + 0 \\ -2.0$	154 · 5 158 · 5 162 · 5	151 155 159	154 · 5 158 · 5 162 · 5
113 114 115	${}^{51.5}_{55.5}_{59.5} {+}^{0}_{-1.25}$	58 - 5 62 - 5 66 - 5	55 59 63	58.5 62.5 66.5	140 141 142	$\begin{bmatrix} 159.5 \\ 163.5 \\ 167.5 \end{bmatrix} \begin{array}{l} +0 \\ -2.0 \end{array}$	166 · 5 170 · 5 174 · 5	163 167 171	166.5 170.5 174.5
116 117 118	$\begin{array}{c} 63.5 \\ 67.5 \\ 71.5 \end{array} \right\} \begin{array}{c} +0 \\ -1.5 \end{array}$	70 · 5 74 · 5 78 · 5	67 71 75	70·5 74·5 78·5	143 144 145	$\begin{bmatrix} 171.5 \\ 175.5 \\ 179.5 \end{bmatrix} \begin{array}{l} +0 \\ -2.0 \end{array}$	178 · 5 182 · 5 186 · 5	175 179 183	178 · 5 182 · 5 186 · 5
119 120 121	$ \begin{array}{c} 75.5 \\ 79.5 \\ 83.5 \end{array} \right\} \begin{array}{c} +0 \\ -1.75 \end{array} $	82 · 5 86 · 5 90 · 5	79 83 87	82·5 86·5 90·5	146 147 148	$\begin{bmatrix} 183.5 \\ 187.5 \\ 191.5 \end{bmatrix} \begin{array}{l} +0 \\ -2.0 \end{array}$	190 · 5 194 · 5 198 · 5	187 191 195	190 · 5 194 · 5 198 · 5
122 123 124	$\begin{array}{c} 87.5 \\ 91.5 \\ 95.5 \end{array} \} \begin{array}{c} +0 \\ -2.0 \end{array}$	94 · 5 98 · 5 102 · 5	91 95 99	94·5 98·5 102·5	149 150 151	$ \begin{vmatrix} 195.5 \\ 199.5 \\ 203.5 \end{vmatrix} + 0 \\ -2.0 $	202 · 5 206 · 5 210 · 5	199 203 207	202 · 5 206 · 5 210 · 5
125 126 127	$ \begin{array}{c} 99.5 \\ 103.5 \\ 107.5 \end{array} \right\} \begin{array}{c} +0 \\ -2.0 \end{array} $	106·5 110·5 114·5	103 107 111	106·5 110·5 114·5	152 153 154	$207.5 \atop 211.5 \atop 215.5 + 0 \atop -2.0$	214·5 218·5 222·5	211 215 219	214·5 218·5 222·5

Abstracted by permission of the British Engineering Standards Association from B.S. Specification 5 W. 3, official copies of which can be obtained from the Secretary of the Association, 28, Victoria Street, Westminster, S.W.1, price 3d., postfree.

5 W 3. January, 1928.

STREAMLINE WIRES-contd.

219

215 5

219.5

219

223

(Cancelling B.S. Specification 4 W. 3.)

Size: 7 inch.

Ultimate Tensile Strength: 2,600 lb.

Thread: 7 inch, B.S.F. D = 1.8 inches.

Oval: W = 0.301 inch (min.); T = 0.075 inch (min.); R = 0.451 inch; r = 0.017 inch. Area of Oval = 0.0174 sq. inch (min.); 0.0191 sq. inch (max.).

For "A" Lengths between For "A" Lengths В Overall Part Part Overall between Length of Blank Length of Blank (With Limits) (With Limits) Min. Max. Min. Max Inches Inches Inches Inches Inches Inches Inches 115 · 5 119 · 5 123 · 5 $\begin{vmatrix}
111 \cdot 5 \\
115 \cdot 5
\end{vmatrix} + 0 \\
-2 \cdot 0$ $\begin{array}{c}
3.5 \\
7.5 \\
11.5
\end{array} + 0$ 119 123 127 11 119 123 127 202 15 19 11.5 15 19 229 230 15.5 119.5 $\begin{array}{c} 15.5 \\ 19.5 \\ 23.5 \end{array} \right\} \begin{array}{c} +0 \\ -.5 \end{array}$ $\begin{bmatrix} 123 \cdot 5 \\ 127 \cdot 5 \\ 131 \cdot 5 \end{bmatrix} + 0 \\ -2 \cdot 0$ 204 19.5 23 231 131 127.5 205 27 31 23.5 27 232 135 131.5 135 139 206 27.5 233 135 - 5 207 208 209 $\begin{array}{c} 27.5 \\ 31.5 \\ 35.5 \end{array} \right\} \begin{array}{c} +0 \\ -.75 \end{array}$ 234 235 236 35 39 31.5 139 - 5 143 147 35 · 5 39 · 5 39 43 139·5 143·5 143.5 147.5 147 151 43 151 $\left. \begin{array}{c} 147.5 \\ 151.5 \\ -2.0 \end{array} \right\} \begin{array}{c} +0 \\ -2.0 \end{array}$ 210 211 212 $\begin{array}{c} 39.5 \\ 43.5 \\ 47.5 \end{array} \} \begin{array}{c} +0 \\ -1.0 \end{array}$ 151 · 5 155 · 5 159 · 5 155 51 55 47 · 5 51 · 5 238 239 159 163 159 163 $\begin{array}{c} 51 & 5 \\ 55 & 5 \\ 59 & 5 \end{array} \right\} \begin{array}{c} +0 \\ -1 \cdot 25 \end{array}$ 213 59 63 67 $\begin{bmatrix} 159.5 \\ 163.5 \\ 167.5 \end{bmatrix} + \begin{matrix} 0 \\ -2.0 \end{bmatrix}$ 167 171 175 55 - 5 240 163 - 5 214 215 63 67 59 5 241 167 · 5 171 · 5 171 175 63.5 71 75 79 67 · 5 71 · 5 75 · 5 243 244 245 216 175 - 5 179 $171.5 \atop 175.5 \atop 179.5$ $+0 \atop -2$ 179 217 218 75 79 179.5 183 187 183.5 187 219 $\begin{array}{c}
 \begin{array}{c}
 79.5 \\
 79.5 \\
 83.5
\end{array}$ \right\ri\right\right\right\right\right\right\right\right\right\right\righ 183.57 191 187 - 5 187.5 +0 220 221 87 91 83.5 247 195 199 191 · 5 195 · 5 195 91 87.5 248 191 5 199 $\left.\begin{array}{c} 87.5 \\ 91.5 \\ -2.0 \end{array}\right\} + 0$ 222 223 224 95 99 103 249 250 251 ${}^{195 \cdot 5}_{199 \cdot 5} \\ {}^{+0}_{203 \cdot 5} \\ {}^{+2 \cdot 0}$ 95 91.5 199.5 203 99 95 · 5 99 · 5 207 211 203 - 5 207 103 207 - 5 211 $\begin{bmatrix} 99.5 \\ 103.5 \end{bmatrix} + 0$ 252 253 254 207.5 211.5 215.5107 103 .5 215 211.5 215 111 115 111 115

Abstracted by permission of the British Engineering Standards Association from B.S. Specification 5 W. 3, official copies of which can be obtained from the Secretary of the Association, 28, Victoria Street, Westminster, S.W.1, price 8d., post free.

107 · 5 111 · 5

107.5

STREAMLINE WIRES-contd.

5 W. 3. January, 1928.

(Cancelling B.S. Specification 4 W. 3.)

Size : 4 inch.

Illtimate Tensile Strength: 3,450 lb.

Thread: 1 inch. B.S.F. D = 1.8 inches.

Oval: W = 0.348 inch (min.): T = 0.087 inch (min.): R = 0.522 inch; r = 0.019 inch. Area of Oval = 0.0233 sq. inch (min.): 0.0250 sq. inch (max.).

Part No.	В	Overáll Length	For "A" betw		Part No.	В	Overall Length	For "A" betw	Lengths een
	(With Limits)	of Blank	Min.	Max.		(With Limits)	of Blank	Min.	Max.
301 302 303	$ \begin{array}{c} \text{Inches} \\ 3 & 5 \\ 7 & 5 \\ 11 \cdot 5 \end{array} + 0 \\ -25 $	Inches 11 15 19	Inches 7.5 11.5 15.5	Inches 11 15 19	328 329 330	$ \begin{array}{c} \text{Inches} \\ 111 & 5 \\ 115 & 5 \\ 119 & 5 \end{array} + 0 \\ -2 & 0 $	Inches 119 123 127	Inches 115 5 119 5 123 5	Inches 119 123 127
304 305 306	$\begin{bmatrix} 15.5 \\ 19.5 \\ 23.5 \end{bmatrix} + 0 \\5$	23 27 31	19·5 23·5 27·5	23 27 31	331 332 333	$\begin{bmatrix} 123.5 \\ 127.5 \\ 131.5 \end{bmatrix} + 0 \\ -2.0$	131 135 139	127 · 5 131 · 5 135 · 5	131 135 139
307 308 309	$ \begin{array}{c} 27.5 \\ 31.5 \\ 35.5 \end{array} $ +0 -75	35 39 43	31 · 5 35 · 5 39 · 5	35 39 43	334 335 336	$\begin{bmatrix} 135.5 \\ 139.5 \\ 143.5 \end{bmatrix} + 0 \\ -2.0$	143 147 151	139 · 5 143 · 5 147 · 5	143 147 151
310 311 312	$ \begin{vmatrix} 39.5 \\ 43.5 \\ 47.5 \end{vmatrix} +0 \\ -1.0 $	47 51 55	43 · 5 47 · 5 51 · 5	47 51 55	337 338 339	$\begin{bmatrix} 147.5 \\ 151.5 \\ 155.5 \end{bmatrix} + 0 \\ -2.0$	155 159 163	151 · 5 155 · 5 159 · 5	155 159 163
313 314 315	$\begin{bmatrix} 51.5 \\ 55.5 \\ 59.5 \end{bmatrix} + 0 \\ -1.25$	59 63 67	55 · 5 59 · 5 63 · 5	59 63 67	340 341 342	$ \begin{vmatrix} 159 \cdot 5 \\ 163 \cdot 5 \\ 167 \cdot 5 \end{vmatrix} + 0 \\ -2 \cdot 0 $	167 171 175	163 · 5 167 · 5 171 · 5	167 171 175
316 317 318	$ \begin{bmatrix} 63.5 \\ 67.5 \\ 71.5 \end{bmatrix} +0 \\ -1.5 $	71 75 79	67 · 5 71 · 5 75 · 5	71 75 79	343 344 345	$\begin{bmatrix} 171.5 \\ 175.5 \\ 179.5 \end{bmatrix} \begin{array}{c} +0 \\ -2.0 \\ \end{bmatrix}$	179 183 187	175 · 5 179 · 5 183 · 5	179 183 187
319 320 321	$ \begin{vmatrix} 75.5 \\ 79.5 \\ 83.5 \end{vmatrix} +0 \\ -1.75 $	83 87 91	79 · 5 83 · 5 87 · 5	83 87 91	346 347 348	$\begin{bmatrix} 183.5 \\ 187.5 \\ 191.5 \end{bmatrix} + 0 \\ -2.0$	191 195 199	187 · 5 191 · 5 195 · 5	191 195 199
322 323 324	$\begin{bmatrix} 87.5 \\ 91.5 \\ 95.5 \end{bmatrix} + 0 \\ -2.0$	95 99 103	91 · 5 95 · 5 99 · 5	95 99 103	349 350 351	$\begin{bmatrix} 195.5 \\ 199.5 \\ 203.5 \end{bmatrix} \begin{array}{c} +0 \\ -2.0 \end{array}$	203 207 211	199·5 203·5 207·5	203 207 211
325 326 327	$\begin{bmatrix} 99.5 \\ 103.5 \\ 107.5 \end{bmatrix} + 0 \\ -2.0$	107 111 115	103 · 5 107 · 5 111 · 5	107 111 115	352 353 354	$\begin{bmatrix} 207.5 \\ 211.5 \\ 215.5 \end{bmatrix} + 0 \\ -2.0$	215 219 223	211 · 5 215 · 5 219 · 5	215 219 223

Abstracted by permission of the British Engineering Standards Association from B.S. Specification 5 W. 3. official copies of which can be obtained from the Scredary of the Association, 28, Victoria Street, Westminster, S.W.1, price 8d., post free.

[5 W. 3. January, 1928.]
(Cancelling B.S. Specification 4 W. 3.)

STREAMLINE WIRES-contd.

Size: 🏖 inch.

Ultimate Tensile Strength: 4,650 lb.

Thread: 3 inch, B.S.F. D = 1.9 inches.

Oval: W = 0.404 inch (min.); T = 0.101 inch (min.); R = 0.606 inch; r = 0.022 inch. Area of Oval = 0.0314 sq. inch (min.); 0.0338 sq. inch (max.).

Part No.	B (With Limits)	Overall Length	For " A bety	'' Lengths veen	Part No.	В	Overall Length	For "A bet	" Length ween
	(With Limits)	of Blank	Min.	Max.		(With Limits)	of Blank	Min.	Max.
	Inches	Inches	Inches	Inches	da0	Inches	Inches	Inches	Inches
401	$ \begin{vmatrix} 3.5 \\ 7.5 \\ 11.5 \end{vmatrix} +0 \\25 $	11.5	8	11.5	428	$111.5 \\ 115.5 \\ + 0$	119.5	116	119.5
402	7.5	15.5	12	15.5	429	115.5	123 - 5	120	123.5
403	11.5)	19-5	16	19.5	430	119.5 -2.0	127 · 5	124	127.5
404	$ \begin{array}{c} 15.5 \\ 19.5 \\ 23.5 \end{array} + 0 $	23.5	20	23.5	431	123.5)	131 - 5	128	131 - 5
405	19.5	27.5	24	27.5	432	127.5 +0	135 . 5	132	135.5
406	23.5	31.5	28	31 · 5	433	$\begin{bmatrix} 123.5 \\ 127.5 \\ 131.5 \end{bmatrix} + 0 \\ -2.0$	139 · 5	136	139.5
407	$ \begin{vmatrix} 27.5 \\ 31.5 \\ 35.5 \end{vmatrix} $ $+0$ 75	35.5	32	35 - 5	434	135.50	143.5	140	143.5
408	31.5	39.5	36	39.5	435	$135.5 \\ 139.5 \\ + 0$	147.5	144	147.5
409	35.5] 15	43.5	40	43 5	436	$139.5 \\ 143.5$ -2.0	151 -5	148	151 - 5
410	39.57	47.5	44	47.5	437		155-5	152	1 FF F
411	${39.5 \atop 43.5} + 0$	51.5	48	51.5	438	151.5 (+0	159.5	156	155 · 5 159 · 5
412	$\begin{array}{c} 43.5 \\ 47.5 \end{array}$ $\begin{bmatrix} -1.0 \\ -1 \end{bmatrix}$	55 - 5	52	55 5	439	$ \begin{vmatrix} 147.5 \\ 151.5 \\ 155.5 \end{vmatrix} + 0 \\ -2.0 $	163.5	160	163 5
413	51.5)	59.5	56	59.5	440	159.50	167.5	164	167.5
414	$ \begin{array}{c} 51.5 \\ 55.5 \\ 59.5 \end{array} + 0 \\ -1.25 $	63 - 5	60	63 5	441	163.5 +0	171.5	168	171.5
415	59.5	67.5	64	67 5	442	$\begin{array}{c} 159.5 \\ 163.5 \\ 167.5 \end{array} \right\} \begin{array}{c} +0 \\ -2.0 \end{array}$	175-5	172	175.5
416	63-5)	71.5	68	71.5	443	171.5)	179.5	176	179.5
417	67.5 } +0	75.5	72	75.5	444	175.5 +0	183 - 5	180	183 - 5
418	$ \begin{array}{c} 63.5 \\ 67.5 \\ 71.5 \end{array} \right\} + 0 \\ -1.5 $	79.5	76	79.5	445	$ \begin{array}{c} 171.5 \\ 175.5 \\ 179.5 \end{array} \right\} \begin{array}{c} +0 \\ -2.0 \end{array} $	187.5	184	187.5
419	75.5)	83 - 5	80	83 5	446	182.57	191.5	188	101.5
120	79.5	87.5	84	87.5	447	$183.5 \\ 187.5 + 0$	195.5	192	191 · 5 195 · 5
121	$ \begin{bmatrix} 75.5 \\ 79.5 \\ 83.5 \end{bmatrix} +0 -1.75 $	91.5	88	91 - 5	448	191.5] -2.0	199.5	196	199 5
122	87.5)	95.5	92	95.5	449		000 7	900	
123	$\begin{array}{c} 87.5 \\ 91.5 \\ \end{array} + 0$	99.5	96	99.5	450	$195.5 \\ 199.5 \\ +0$	203·5 207·5	200	203 5
124	$\begin{array}{c} 91.5 \\ 95.5 \end{array}$ $\left. \begin{array}{c} -2.0 \\ \end{array} \right $	103 5	100	103.5	451	203.5	211.5	204	207 · 5 211 · 5
125	99.57	107.5	104	107 5	452				
26	$ \begin{vmatrix} 99.5 \\ 103.5 \\ 107.5 \end{vmatrix} +0 \\ -2.0 $	111.5	108	111 5	453	$207.5 \\ 211.5 \\ +0$	215.5	212	215.5
27	107.5 -2.0	115 5	112	115 5	454	211.5	219·5 223·5	216 220	219 · 5 223 · 5

Abstracted by permission of the British Engineering Standards Association from B.S. Specification 5 W. 3, official copies of which can be obtained from the Secretary of the Association, 23, Victoria Street, Westminster, S.W.1, price 8d., post free.

STREAMLINE WIRES-contd.

[5 W. 3. January, 1928.

(Cancelling B.S. Specification 4 W. 3.)

Size: & inch.

Ultimate Tensile Strength: 5,700 lb.

Thread: $\frac{5}{16}$ inch, B.S.F. $D = 2 \cdot 0$ inches.

Oval: W = 0.44 inch (min.); T = 0.11 inch (min.); R = 0.66 inch; r = 0.024 inch. Area of Oval = 0.0372 sq. inch (min.); 0.0400 sq. inch (max.).

Part No.	В	Overali Length	For "A' betw	Lengths veen	Part No.	В	Overall Length	For "A" betw	
	(With Limits)	of Blank	Min.	Max.		(With Limits)	of Blank	Min.	Max.
9.4	Inches	Inches	Inches	Inches	14 E	Inches	Inches	Inches	Inches
501	$\frac{3.5}{7.5}$ +0	11.5	8	11.5	528	$111.5 \\ 115.5 \\ +0$	119.5	116	119.5
502	7.5	15.5	12	15.5	529	115.5	123 5	120	123 5
503	11.5 -25	19-5	16	19.5	530	$110.5 \\ 119.5 \\ -2.0$	127.5	124	127.5
504	$\begin{array}{c} 15.5 \\ 19.5 \\ 23.5 \end{array} + 0 \\ \div .5$	23 5	20	23.5	531	$\begin{bmatrix} 123.5 \\ 127.5 \\ 131.5 \end{bmatrix} \begin{array}{c} +0 \\ -2.0 \end{array}$	131 - 5	128	131 - 5
505	19.5	27.5	24	27.5	532	127 5 7 2 0	135 5	132	135 - 5
506	23.5	31 - 5	28	31 5	533	131.5]	139 5	136	139.5
507	27.5)	35.5	32	35.5	534	$\begin{bmatrix} 135.5 \\ 139.5 \\ 143.5 \end{bmatrix} + 0 \\ -2.0$	143.5	140	143 - 5
508	31.5 5 7 7 7 7	39.5	36	39.5	535	139.5	147.5	144	147 - 5
509	$ \begin{vmatrix} 27.5 \\ 31.5 \\ 35.5 \end{vmatrix} + 0 \\75 $	43.5	40	43.5	536	143 5] -2.0	151 - 5	148	151 - 5
510	39.5)	47.5	44	47.5	537	$\begin{bmatrix} 147.5 \\ 151.5 \\ 155.5 \end{bmatrix} + 0 \\ -2.0$	155 - 5	152	155 - 5
511	43.5	51.5	48	51.5	538	151.5	159.5	156	159 - 5
512	$\begin{bmatrix} 39.5 \\ 43.5 \\ 47.5 \end{bmatrix} + 0 \\ -1.0$	55 - 5	52	55 · 5	539	155.5	163 - 5	160	163.5
513	$\begin{bmatrix} 51.5 \\ 55.5 \\ 59.5 \end{bmatrix} + 0 \\ -1.25$	59.5	56	59.5	540	$ \begin{vmatrix} 159.5 \\ 163.5 \\ 167.5 \end{vmatrix} + 0 \\ -2.0 $	167 - 5	164	167 - 5
514	55.5 > 1 95	63 - 5	60	63.5	541	163.5	171 5	168	171 - 5
515	59.5	67.5	64	67 - 5	542	167.5	175.5	172	175 - 5
516	63.5)	71 - 5	68	71.5	543	$\begin{bmatrix} 171.5 \\ 175.5 \\ 179.5 \end{bmatrix} + 0 \\ -2.0$	179.5	176	179 - 5
517	67.5 > +0	75.5	72	75.5	544	175.5 5	183.5	180	183 -
518	$ \begin{bmatrix} 63.5 \\ 67.5 \\ 71.5 \end{bmatrix} +0 -1.5 $	79 - 5	76	79.5	545	179.5	187.5	184	187 5
519	75.5)	83 - 5	80	83 - 5	546	$\begin{bmatrix} 183.5 \\ 187.5 \\ 191.5 \end{bmatrix} + 0 \\ -2.0$	191 - 5	188	191 - 5
520	79.5 +0	87 - 5	84	87.5	547	187.5	195 5	192	195 -
521	$ \begin{bmatrix} 75.5 \\ 79.5 \\ 83.5 \end{bmatrix} +0 -1.75 $	91 5	88	91.5	548	191 .5	199.5	196	199 -
522	87.57	95 5	92	95 - 5	549	$195.5 \\ 199.5 \\ +0$	203 - 5	200	203 - 6
523	91.5	99.5	96	99-5	550	199.5	207 - 5	204	207 ⋅€
524	$ \begin{vmatrix} 87.5 \\ 91.5 \\ 95.5 \end{vmatrix} + 0 \\ -2.0 $	103 - 5	100	103.5	551	$\begin{bmatrix} 199.5 \\ 203.5 \end{bmatrix} - 2.0$	211-5	208	211 -
525	99.57	107.5	104	107.5	552	$\begin{bmatrix} 207.5 \\ 211.5 \\ 215.5 \end{bmatrix} + 0 \\ -2.0$	215.5	212	215 (
526	$ \begin{bmatrix} 99.5 \\ 103.5 \\ 107.5 \end{bmatrix} +0 \\ -2.0 $	111.5	108	111 5	553	211.5 \ +0	219.5	216	219
527	107.5 -2.0	115 - 5	112	115.5	554	215.5	223 5	220	223

Abstracted by permission of the British Engineering Standards Association from B.S. Specification 5 W. 3. official copies of which can be obtained from the Secretary of the Association, 28, Victoria Street, Westminster, S.W.1, pree 3d., post free.

5 W. 3. January, 1928.

STREAMLINE WIRES-contd.

Cancelling B.S. Specification 4 W. 3.)

Size: 11 inch.

Ultimate Tensile Strength: 7,150 lb.

Thread: 11 inch, B.S.F. D = 2·1 inches.

Oval: W = 0.496 inch (min.); T = 0.124 inch (min.); R = 0.744 inch; r = 0.027 inch.

Area of Oval = 0.0473 sq. inch (min.); 0.0508 sq. inch (max.).

Part No.	В	Overall Length	For "A' betw	' Lengths veen	Part No.		Overall Length	For "A' betw	' Lengths reen
	(With Limits)	of Blank	Min.	Max.		(With Limits)	of Blank	Min.	Max.
601 602 603	Inches $ \begin{vmatrix} 3 \cdot 5 \\ 7 \cdot 5 \\ 11 \cdot 5 \end{vmatrix} + 0 \\ - \cdot 25$	Inches 11 · 5 15 · 5 19 · 5	Inches 8 12 16	Inches 11.5 15.5 19.5	628 629 630	$ \begin{array}{c} \text{Inches} \\ 111 \cdot 5 \\ 115 \cdot 5 \\ 119 \cdot 5 \end{array} + 0 \\ -2 \cdot 0 $	Inches 119·5 123·5 127·5	Inches 116 120 124	Inches 119·5 123·5 127·5
604 605 606	$\begin{bmatrix} 15.5 \\ 19.5 \\ 23.5 \end{bmatrix} + 0 \\ -5$	23 · 5 27 · 5 31 · 5	20 24 28	23 · 5 27 · 5 31 · 5	631 632 633	$ \begin{vmatrix} 123 & 5 \\ 127 & 5 \\ 131 & 5 \end{vmatrix} +0 \\ -2 & 0 $	131 · 5 135 · 5 139 · 5	128 132 136	121 · 5 135 · 5 139 · 5
607 608 609	$ \begin{array}{c} 27.5 \\ 31.5 \\ 35.5 \end{array} +0 $ -75	35 · 5 39 · 5 43 · 5	32 36 40	35 · 5 39 · 5 43 · 5	634 635 636	$\begin{bmatrix} 135.5 \\ 139.5 \\ 143.5 \end{bmatrix} + 0 \\ -2.0$	143 · 5 147 · 5 151 · 5	140 144 148	143 · 5 147 · 5 151 · 5
610 611 612	$ \begin{vmatrix} 39.5 \\ 43.5 \\ 47.5 \end{vmatrix} +0 \\ -1.0 $	47 · 5 51 · 5 55 · 5	44 48 52	47·5 51·5 55·5	637 638 639	$\begin{array}{c} 147.5 \\ 151.5 \\ 155.5 \end{array} \right\} \begin{array}{c} +0 \\ -2.0 \end{array}$	155 · 5 159 · 5 163 · 5	152 156 160	155 · 5 159 · 5 163 · 5
613 614 615	$\begin{bmatrix} 51.5 \\ 55.5 \\ 59.5 \end{bmatrix} + 0 \\ -1.25$	59 · 5 63 · 5 67 · 5	56 60 64	59·5 63·5 67·5	640 641 642	$\begin{array}{c} 159.5 \\ 163.5 \\ 167.5 \end{array} \right\} \begin{array}{c} +0 \\ -2.0 \end{array}$	167 · 5 171 · 5 175 · 5	164 168 172	167 · 5 171 · 5 175 · 5
616 617 618	$\begin{bmatrix} 63.5 \\ 67.5 \\ 71.5 \end{bmatrix} \begin{array}{c} +0 \\ -1.5 \end{array}$	71 · 5 75 · 5 79 · 5	68 72 76	71 · 5 75 · 5 79 · 5	643 644 645	$\begin{bmatrix} 171.5 \\ 175.5 \\ 179.5 \end{bmatrix} + 0 \\ -2.0$	179 · 5 183 · 5 187 · 5	176 180 184	179 · 5 183 · 5 187 · 5
619 620 621	$ \begin{array}{c} 75.5 \\ 79.5 \\ 83.5 \end{array} \} \begin{array}{c} +0 \\ -1.75 \end{array} $	83 · 5 87 · 5 91 · 5	80 84 88	83 · 5 87 · 5 91 · 5	646 647 648	$ \begin{vmatrix} 183.5 \\ 187.5 \\ 191.5 \end{vmatrix} +0 \\ -2.0 $	191 5 195 5 199 5	188 192 196	191 · 5 195 · 5 199 · 5
622 623 624	$\begin{array}{c} 87.5 \\ 91.5 \\ 95.5 \\ \end{array} \\ \begin{array}{c} +0 \\ -2.0 \end{array}$	95 · 5 99 · 5 103 · 5	92 96 100	95 · 5 99 · 5 103 · 5	649 650 651	$\begin{array}{c} 195.5 \\ 199.5 \\ 203.5 \end{array} \right\} \begin{array}{c} +0 \\ -2.0 \end{array}$	203 · 5 207 · 5 211 · 5	200 204 208	203 · 5 207 · 5 211 · 5
625 626 627	$\begin{array}{c} 99.5 \\ 103.5 \\ 107.5 \end{array} \right\} \begin{array}{c} +0 \\ -2.0 \end{array}$	107 5 111 5 115 5	104 108 112	107 · 5 111 · 5 115 · 5	652 653 654	$\begin{array}{c} 207.5 \\ 211.5 \\ 215.5 \end{array} \right\} \begin{array}{c} +0 \\ -2.0 \end{array}$	215 · 5 219 · 5 223 · 5	212 216 220	215 · 5 219 · 5 223 · 5

Abstracted by permission of the British Engineering Standards Association from B.S. Specification 5 W. 3, official copies of which can be obtained from the Secretary of the Association, 23, Victoria Street, Westminuter, S.W.1, price 8d., post free.

STREAMLINE WIRES—contd.

5 W. 3. January, 1928.

(Cancelling B.S. Specification 4 W. 3.)

Size: 3 inch.

Ultimate Tensile Strength: 8,500 lb.

Thread: 1 inch, B.S.F. D = 2.2 inches.

Oval: W = 0.54 inch (min.); T = 0.135 inch (min.); R = 0.81 inch; r = 0.03 inch.

Area of Oval = 0.0561 sq. inch (min.); 0.0603 sq. inch (max.).

Part No.	В	Overall Length	For "A" betw		Part No.	В	Overall Length	For "A" betw	
717	(With Limits)	of Blank	Mín.	Max.		(With Limits)	of Blank	Min.	Max.
701 702 703	$ \begin{array}{c} \text{Inches} \\ 3.5 \\ 7.5 \\ 11.5 \end{array} + 0 $ $ \begin{array}{c} +0 \\ -25 \end{array} $	Inches 12 16 20	Inches 8.5 12.5 16.5	Inches 12 16 20	728 729 730	Inches $ \begin{vmatrix} 111 & 5 \\ 115 & 5 \\ 119 & 5 \end{vmatrix} + 0 \\ -2 \cdot 0 $	Inches 120 124 128	Inches 116 · 5 120 · 5 124 · 5	Inches 120 124 128
704 705 706	$ \begin{bmatrix} 15.5 \\ 19.5 \\ 23.5 \end{bmatrix} \frac{+0}{-5.5} $	24 28 32	20 · 5 24 · 5 28 · 5	24 28 32	731 732 733	$\begin{bmatrix} 123.5 \\ 127.5 \\ 131.5 \end{bmatrix} \begin{array}{c} +0 \\ -2.0 \end{array}$	132 136 140	128 · 5 132 · 5 136 · 5	132 136 140
707 708 709	$ \begin{vmatrix} 27.5 \\ 31.5 \\ 35.5 \end{vmatrix} $ $ \div -0.75$	36 40 44	32 · 5 36 · 5 40 · 5	36 40 44	734 735 736	$ \begin{vmatrix} 135 \cdot 5 \\ 139 \cdot 5 \\ 143 \cdot 5 \end{vmatrix} + 0 \\ -2 \cdot 0 $	144 148 152	140 · 5 144 · 5 148 · 5	144 148 152
710 711 712	$ \begin{vmatrix} 39.5 \\ 43.5 \\ 47.5 \end{vmatrix} +0 \\ -1.0 $	48 52 56	44 · 5 48 · 5 52 · 5	48 52 56	737 738 739	$\begin{bmatrix} 147.5 \\ 151.5 \\ 155.5 \end{bmatrix} + 0 \\ -2.0$	156 160 164	152·5 156·5 160·5	156 160 164
,713 714 715	$\begin{bmatrix} 51.5 \\ 55.5 \\ 59.5 \end{bmatrix} + 0 \\ -1.25$	60 64 68	56 · 5 60 · 5 64 · 5	60 64 68	740 741 742	$\begin{bmatrix} 159 & 5 \\ 163 & 5 \\ 167 & 5 \end{bmatrix} + 0 \\ -2 & 0$	168 172 176	164 · 5 168 · 5 172 · 5	168 172 176
716 717 718	$\begin{bmatrix} 63.5 \\ 67.5 \\ 71.5 \end{bmatrix} + 0 \\ -1.5$	72 76 80	68 · 5 72 · 5 76 · 5	72 76 80	743 744 745	$\begin{bmatrix} 171 \cdot 5 \\ 175 \cdot 5 \\ 179 \cdot 5 \end{bmatrix} + 0 \\ -2 \cdot 0$	180 184 188	176 · 5 180 · 5 184 · 5	180 184 188
719 720 721	$ \begin{bmatrix} 75.5 \\ 79.5 \\ 83.5 \end{bmatrix} +0 \\ -1.75$	84 88 92	80 · 5 84 · 5 88 · 5	84 88 92	746 747 748	$\begin{bmatrix} 183.5 \\ 187.5 \\ 191.5 \end{bmatrix} + 0 \\ -2.0$	192 196 200	188 · 5 192 · 5 196 · 5	192 196 200
722 723 724	$ \begin{vmatrix} 87.5 \\ 91.5 \\ 95.5 \end{vmatrix} + 0 \\ -2.0 $	96 100 104	92·5 96·5 100·5	96 100 104	749 750 751	$ \begin{vmatrix} 195.5 \\ 199.5 \\ 203.5 \end{vmatrix} +0 \\ -2.0 $	204 208 212	200 · 5 204 · 5 208 · 5	204 208 212
725 726 727	$\begin{bmatrix} 99.5 \\ 103.5 \\ 107.5 \end{bmatrix} + 0 \\ -2.0$	108 112 116	104 · 5 108 · 5 112 · 5	108 112 116	752 753 754	$\begin{bmatrix} 207.5 \\ 211.5 \\ 215.5 \end{bmatrix} + 0 \\ -2.0$	216 220 224	212 · 5 216 · 5 220 · 5	216 220 224

Abstracted by permission of the Brilith Engineering Standards Association from B.S. Specification 5 W. 3, official copies of which can be obtained from the Secretary of the Association, 28, Victoria Street, Westmisster, S.W.1, price 8d., post free.

[5 W. 3. January, 1928.] (Cancelling B.S. Specification 4 W. 3.)

STREAMLINE WIRES-contd.

Size: 13 inch.

Ultimate Tensile Strength: 10,250 lb.

Thread: $\frac{13}{2}$ inch, B.S.F. D = 2.3 inches.

Oval: W = 0.596 inch (min.); T = 0.149 inch (min.); R = 0.894 inch; r = 0.033 inch. Area of Oval = 0.0683 sq. inch (min.); 0.0734 sq. inch (max.).

Part No.	B (With Limits)	Overall Length of Blank	For " A bety	" Lengths ween	Part No.	1. "好不知时是是	Overall Length	For " A bet	"Lengths ween
		Of Dialik	Min.	Max.		(With Limits)	of Blank	Min.	Max.
801 802 803	$ \begin{array}{c c} & \text{Inches} \\ & 3 \cdot 5 \\ & 7 \cdot 5 \\ & 11 \cdot 5 \end{array} + 0 $	Inches 12 16 20	Inches 8 · 5 12 · 5 16 · 5	Inches 12 16 20	828 829 830	Inches 111.5 115.5 115.5 119.5 -2.0	Inches 120 124 128	Inches 116.5 120.5 124.5	Inches 120 124 128
804 805 806	$\begin{bmatrix} 15.5 \\ 19.5 \\ 23.5 \end{bmatrix} + 0 \\5$	24 28 32	20 · 5 24 · 5 28 · 5	24 28 32	831 832 833	$\begin{bmatrix} 123.5 \\ 127.5 \\ 131.5 \end{bmatrix} \begin{array}{c} +0 \\ -2.0 \end{array}$	132 136 140	128 · 5 132 · 5 136 · 5	132 136 140
807 808 809	$ \begin{vmatrix} 27.5 \\ 31.5 \\ 35.5 \end{vmatrix} +0 -75 $	36 40 44	32 · 5 36 · 5 40 · 5	36 40 44	834 835 836	$\begin{bmatrix} 135.5 \\ 139.5 \\ 143.5 \end{bmatrix} + 0 \\ -2.0$	144 148 152	140 · 5 144 · 5 148 · 5	144 148 152
810 811 812	$ \begin{vmatrix} 39.5 \\ 43.5 \\ 47.5 \end{vmatrix} + 0 \\ -1.0 $	48 52 56	44.5 48.5 52.5	48 52 56	837 838 839	$ \begin{vmatrix} 147.5 \\ 151.5 \\ 155.5 \end{vmatrix} +0 \\ -2.0 $	156 160 164	152 · 5 156 · 5 160 · 5	156 160 164
813 814 815	$ \begin{array}{c} 51.5 \\ 55.5 \\ 59.5 \end{array} + 0 \\ -1.25 $	60 64 68	56·5 60·5 64·5	60 64 68	840 841 842	159.5 163.5 167.5 -2.0	168 172 176	164.5 168.5 172.5	168 172 176
816 817 818	$ \begin{array}{c} 63.5 \\ 67.5 \\ 71.5 \end{array} \left.\begin{array}{c} +0 \\ -1.5 \end{array} \right] $	72 76 80	68 · 5 72 · 5 76 · 5	72 76 80	843 844 845	$\begin{bmatrix} 171.5 \\ 175.5 \\ 179.5 \end{bmatrix} + 0 \\ -2.0$	180 184 188	176 · 5 180 · 5 184 · 5	180 184 188
819 820 821	$ \begin{array}{c} 75.5 \\ 79.5 \\ 83.5 \end{array} + 0 $ $ -1.75 $	84 88 92	80 · 5 84 · 5 88 · 5	84 88 92	846 847 848	$ \begin{vmatrix} 183 & 5 \\ 187 & 5 \\ 191 & 5 \end{vmatrix} + 0 \\ -2 & 0 $	192 196 200	188·5 192·5 196·5	192 196 200
822 823 824	$ \begin{vmatrix} 87.5 \\ 91.5 \\ 95.5 \end{vmatrix} + 0 \\ -2.0 $	96 100 104	92 · 5 96 · 5 100 · 5	96 100 104	849 850 851	$ \begin{array}{c} 195.5 \\ 199.5 \\ 203.5 \end{array} + 0 $ $ -2.0 $	204 208 212	200 · 5 204 · 5 208 · 5	204 208 212
325 326 327	$\begin{bmatrix} 99.5 \\ 103.5 \\ 107.5 \end{bmatrix} + 0 \\ -2.0$	108 112 116	104·5 108·5 112·5	108 112 116	852 853 854	$\begin{bmatrix} 207.5 \\ 211.5 \\ 215.5 \end{bmatrix} + 0 \\ -2.0$	216 220 224	212 · 5 216 · 5 220 · 5	216 220 224

Abstracted by permission of the British Engineering Standards Association from B.S. Specification 5 W. 3, official copies of which can be obtained from the Secretary of the Association, 28, Victoria Street, Westminster, S.W.1, price 80, post free.

STREAMLINE WIRES—contd.

5 W. 3. January, 1928.

(Cancelling B.S. Specification 4 W. 3.)

Size: $\frac{1}{4^5}$ inch.

Ultimate Tensile Strength: 11,800 lb.

Thread: $\frac{1}{4^5}$ inch, B.S.F. $D=2\cdot4$ inches.

Oval: W = 0.636 inch (min.); T = 0.159 inch (min.); R = 0.954 inch; r = 0.035 inch.

Area of Oval = 0.0778 sq. inch (min.); 0.0836 sq. inch (max.).

Part No.	B (With Limits)	Overall Length of Blank	For "A' bety	' Lengths veen	Part No.		Overall Length	For "A' bety	' Length reen
	(With Millis)	of Blank	Min.	Max.		(With Limits)	of Blank	Min. ,	Max.
901	Inches	Inches	Inches	Inches	151.5	Inches	Inches	Inches	Inches
902	$\frac{3.5}{7.5}$ +0	12.5	9	12.5	928	$\begin{bmatrix} 111.5 \\ 115.5 \end{bmatrix} + 0$	120 .5	117	120.5
903	11 5 ∫ — ·25	16·5 20·5	13 17	16 5 20 5	929 930	$115.5 \\ 119.5 \\ -2.0$	124 · 5 128 · 5	121 125	124 · 5 128 · 5
904	$\begin{bmatrix} 15.5 \\ 19.5 \end{bmatrix} + 0$	24.5	21	24.5	931	Transfer of North Advances	132 · 5	129	132.5
905	19.5	28.5	25	28 - 5	932	127.5 (+0	136 5	133	136.5
906	23.5 -5	32.5	29	32 · 5	933	$\begin{bmatrix} 123 \cdot 5 \\ 127 \cdot 5 \\ 131 \cdot 5 \end{bmatrix} \begin{array}{c} +0 \\ -2 \cdot 0 \end{array}$	140 -5	137	140.5
907	${27.5 \atop 31.5} + 0$	36.5	33	36 - 5	934	135.5	144.5	141	144.5
908	$31.5 \\ 35.5$ - 75	40.5	37	40.5	935	139.5	148.5	145	148 5
16.56		44.5	41	44.5	936	$\begin{vmatrix} 139.5 \\ 143.5 \end{vmatrix} - 2.0$	152 - 5	149	152 · 5
910	$ \left\{ \begin{array}{c} 39.5 \\ 43.5 \\ 47.5 \end{array} \right\} \left\{ \begin{array}{c} +0 \\ -1.0 \end{array} $	48.5	45	48.5	937	147.5)	156 - 5	153	156 - 5
911	43.5 } _1.0	52.5	49	52 . 5	938	151.5 \ +0	160 - 5	157	160 5
912	47·5J ^ °	56.5	53	56-5	939 .	$\begin{bmatrix} 147.5 \\ 151.5 \\ 155.5 \end{bmatrix} + 0 \\ -2.0$	164 5	161	164 - 5
913	51.5	60.5	57	60.5	940	$\begin{bmatrix} 159.5 \\ 163.5 \\ 167.5 \end{bmatrix} + 0 \\ -2.0$	168 - 5	165	168 - 5
914	59.5	64 . 5	61	64.5	941	163.5 } +0	172.5	169	172 5
915		68-5	65	68.5	942	167.5] -2.0	176.5	173	176 5
916 917	$ \left\{ \begin{array}{c} 63 \cdot 5 \\ 67 \cdot 5 \\ 71 \cdot 5 \end{array} \right\} \left\{ \begin{array}{c} +0 \\ -1 \cdot 5 \end{array} \right\} $	72 - 5	69	72 - 5	943	$171.5 \\ 175.5 \\ + 0$	180 · 5	177	180 - 5
918	71.5 -1.5	76.5	73	76.5	944	175.5	184 5	181	184 5
		80 - 5	77	80 · 5	945	176.5 179.5 —2.0	188 5	185	188.5
919	$75.5 \\ 79.5 \\ + 0$	84.5	81	84.5	946	183.5	192.5	189	192.5
920	79.5	88 - 5	85	88.5	947	187.5	196.5	193	196 5
921	$\begin{array}{c} 79.5 \\ 83.5 \end{array}$ $\left. \begin{array}{c} -1.75 \\ -1.75 \end{array} \right.$	92 · 5	80	92.5	948	$\begin{bmatrix} 183.5 \\ 187.5 \\ 191.5 \end{bmatrix} + 0 \\ -2.0$	200 - 5	197	200 - 5
922	$87.5 \\ 91.5 \\ + 0$	96 - 5	93	96.5	949	195.5 199.5 203.5 -2.0	204 - 5	201	204 - 5
923	$\begin{array}{c} 91.5 \\ 95.5 \end{array}$ -2.0	100 - 5	97	100 · 5	950	199.5 } +0	208 5	205	208 5
924		104.5	101	104.5	951	203.5	212.5	209	212.5
925	$ \begin{vmatrix} 99.5 \\ 103.5 \\ 107.5 \end{vmatrix} + 0 \\ -2.0 $	108.5	105	108 5	952	$207.5 \\ 211.5 \\ + 0$	216-5	213	216.5
926 927	103.5	112.5	109	112.5	953	211.5	220.5	217	220 5
321	101.0]	116.5	113	116.5	954	$211.5 \atop 215.5$ -2.0	224 5	221	224 - 5

Abstracted by permission of the British Engineering Standards Association from B.S. Specification 5 W. 3, official copies of which can be obtained from the Secretary of the Association, 28, Victoria Street, Westminster, S.W.1, price 8d., post free.

5 W. 3. January, 1928.

STREAMLINE WIRES—contd.

Cancelling B.S. Specification 4 W. 3.)

Size: # inch.

Ultimate Tensile Strength: 13,800 lb.

Thread: $\frac{16}{32}$ inch, B.S.F. D = 2.5 inches.

Oval: W = 0.692 inch (min.); T = 0.173 inch (min.); R = 1.038 inches: r = 0.038 inch. Area of Oval = 0.0921 sq, inch (min.): 0.0990 sq, inch (max.).

Part No.	B (With Limits)	Overall Length	For "A' betw	' Lengths veen	Part No.	В	Overall Length	For "A'	
	(With Limits)	of Blank	Min.	Max.		(With Limits)	of Blank	Min.	Max.
1001 1002 1003	$ \begin{array}{c} \text{Inches} \\ 3 \cdot 5 \\ 7 \cdot 5 \\ 11 \cdot 5 \end{array} + 0 \\ -: 25 $	Inches 12·5 16·5 20·5	Inches 9 13 17	Inches 12.5 16.5 20.5	1028 1029 1030	$ \begin{array}{c} \text{Inches} \\ 111.5 \\ 115.5 \\ 119.5 \end{array} + 0 \\ -2.0 $	Inches 120 · 5 124 · 5 128 · 5	Inches 117 121 125	Inches 120 · 5 124 · 5 128 · 5
1004 1005 1006	$\begin{bmatrix} 15.5 \\ 19.5 \\ 23.5 \end{bmatrix} + 0 \\ - \cdot 5$	24 · 5 28 · 5 32 · 5	21 25 29	24 · 5 28 · 5 32 · 5	1031 1032 1033	$ \begin{vmatrix} 123 \cdot 5 \\ 127 \cdot 5 \\ 131 \cdot 5 \end{vmatrix} + 0 \\ -2 \cdot 0 $	132 · 5 136 · 5 140 · 5	129 133 137	132 · 5 136 · 5 140 · 5
1007 1008 1009	$\begin{bmatrix} 27.5 \\ 31.5 \\ 35.5 \end{bmatrix} + 0 \\75$	36·5 40·5 44·5	33 37 41	36 · 5 40 · 5 44 · 5	1034 1035 1036	$\begin{bmatrix} 135.5 \\ 139.5 \\ 143.5 \end{bmatrix} + 0 \\ -2.0$	144 · 5 148 · 5 152 · 5	141 145 149	144 · 5 148 · 5 152 · 5
1010 1011 1012	$ \begin{vmatrix} 39.5 \\ 43.5 \\ 47.5 \end{vmatrix} + 0 \\ -1.0 $	48 · 5 52 · 5 56 · 5	45 49 53	48.5 52.5 56.5	1037 1038 1039	$\begin{bmatrix} 147.5 \\ 151.5 \\ 155.5 \end{bmatrix} \begin{array}{c} +0 \\ -2.0 \\ \end{array}$	156 · 5 160 · 5 164 · 5	153 157 161	156 · 5 160 · 5 164 · 5
1013 1014 1015	$\begin{bmatrix} 51 & 5 \\ 55 & 5 \\ 59 & 5 \end{bmatrix} + \begin{matrix} 0 \\ -1 & 25 \end{bmatrix}$	60 · 5 64 · 5 68 · 5	57 61 65	60 · 5 64 · 5 68 · 5	1040 1041 1042	$ \begin{vmatrix} 159.5 \\ 163.5 \\ 167.5 \end{vmatrix} +0 \\ -2.0 $	168 · 5 172 · 5 176 · 5	165 169 173	168.5 172.5 176.5
1016 1017 1018	$ \begin{vmatrix} 63.5 \\ 67.5 \\ 71.5 \end{vmatrix} +0 \\ -1.5 $	72 · 5 76 · 5 80 · 5	69 73 77	72 · 5 76 · 5 80 · 5	1043 1044 1045	$\begin{bmatrix} 171.5 \\ 175.5 \\ 179.5 \end{bmatrix} + 0 \\ -2.0$	180 · 5 184 · 5 188 · 5	177 181 185	180 · 5 184 · 5 188 · 5
1019 1020 1021	$ \begin{bmatrix} 75.5 \\ 79.5 \\ 83.5 \end{bmatrix} +0 -1.75 $	84 · 5 88 · 5 92 · 5	81 85 89	84 · 5 88 · 5 92 · 5	1046 1047 1048	$ \begin{vmatrix} 183.5 \\ 187.5 \\ 191.5 \end{vmatrix} +0 \\ -2.0 $	192 · 5 196 · 5 200 · 5	189 193 197	192 · 5 196 · 5 200 · 5
1022 1023 1024	$ \begin{vmatrix} 87.5 \\ 91.5 \\ 95.5 \end{vmatrix} +0 \\ -2.0 $	96 · 5 100 · 5 104 · 5	93 97 101	96·5 100·5 104·5	1049 1050 1051	$ \begin{vmatrix} 195.5 \\ 199.5 \\ 203.5 \end{vmatrix} +0 \\ -2.0 $	204 · 5 208 · 5 212 · 5	201 205 209	204 · 5 208 · 5 212 · 5
1025 1026 1027	$\begin{bmatrix} 99.5 \\ 103.5 \\ 107.5 \end{bmatrix} + 0 \\ -2.0$	108 · 5 112 · 5 116 · 5	105 100 113	108·5 112·5 116·5	1052 1053 1054	$\begin{bmatrix} 207.5 \\ 211.5 \\ 215.5 \end{bmatrix} + 0 \\ -2.0$	216 · 5 220 · 5 224 · 5	213 217 221	216 · 5 220 · 5 224 · 5

Abstracted by permission of the British Engineering Standards Association from B.S. Specification 5 W. 3, official copies of which can be obtained from the Secretary of the Association, 28, Victoria Street, Westminster, S.W.1, price 8d., post free.

STREAMLINE WIRES-contd.

5 W 3 January, 1928.

(Cancelling B.S. Specification 4 W. 3.)

 $Size: \begin{tabular}{ll} Size: \begin{tabular}{ll} Size: \begin{tabular}{ll} Inch. \\ Ultimate Tensile Strength: 15,500 lb. \\ Thread: \begin{tabular}{ll} Inch S.S.F. & D = 2.5 inches. \\ Oval: W = 0.732 inch (min.); T = 0.183 inch (min.); B = 1.098 inches; r = 0.04 inch. \\ Area of Oval = 0.1030 sq. inch (min.); 0.1107 sq. inch (max.). \\ \end{tabular}$

Part No.	В	Overall Length	For "A' bety		Part No.	В	Overall Length	For "A' betw	
	(With Limits)	of Blank	Min.	Max.		(With Limits)	of Blank	Min.	Max.
1101 1102 1103	$ \begin{array}{c} \text{Inches} \\ 3 \cdot 5 \\ 7 \cdot 5 \\ 11 \cdot 5 \end{array} + 0 $	Inches 12·5 16·5 20·5	Inches 9 13 17	Inches 12:5 16:5 20:5	1128 1129 1130	$ \begin{array}{c} \text{Inches} \\ 111 \cdot 5 \\ 115 \cdot 5 \\ 119 \cdot 5 \end{array} + 0 \\ -2 \cdot 0 $	Inches 120 · 5 124 · 5 128 · 5	Inches 117 121 125	Inches 120 · 5 124 · 5 128 · 5
1104 1105 1106	$ \begin{vmatrix} 15.5 \\ 19.5 \\ 23.5 \end{vmatrix} +0 -5 $	24 · 5 28 · 5 32 · 5	21 25 29	24 · 5 28 · 5 32 · 5	1131 1132 1133	$\begin{bmatrix} 123.5 \\ 127.5 \\ 131.5 \end{bmatrix} \begin{array}{c} +0 \\ -2.0 \end{array}$	132 · 5 136 · 5 140 · 5	129 133 137	132 · 5 136 · 5 140 · 5
1107 1108 1109	$\begin{bmatrix} 27.5 \\ 31.5 \\ 35.5 \end{bmatrix} + 0 \\75$	36.5 40.5 44.5	33 37 41	36 · 5 40 · 5 44 · 5	1134 1135 1136	$\begin{bmatrix} 135.5 \\ 139.5 \\ 143.5 \end{bmatrix} + 0 \\ -2.0$	144 · 5 148 · 5 152 · 5	141 145 149	144 · 5 148 · 5 152 · 5
1110 1111 1112	$ \begin{vmatrix} 39.5 \\ 43.5 \\ 47.5 \end{vmatrix} +0 \\ -1.0 $	48.5 52.5 56.5	45 49 53	48 · 5 52 · 5 56 · 5	1137 1138 1139	$\begin{bmatrix} 147.5 \\ 151.5 \\ 155.5 \end{bmatrix} + 0 \\ -2.0$	156 · 5 160 · 5 164 · 5	153 157 161	156 · 5 160 · 5 164 · 5
1113 1114 1115	$\begin{bmatrix} 51.5 \\ 55.5 \\ 59.5 \end{bmatrix} + 0 \\ -1.25$	60 · 5 64 · 5 68 · 5	57 61 65	60 · 5 64 · 5 68 · 5	1140 1141 1142	$ \begin{vmatrix} 159.5 \\ 163.5 \\ 167.5 \end{vmatrix} +0 \\ -2.0 $	168 · 5 172 · 5 176 · 5	165 169 173	168 · 5 172 · 5 176 · 5
1116 1117 1118	$\begin{bmatrix} 63.5 \\ 67.5 \\ 71.5 \end{bmatrix} + 0 \\ -1.6$	72 · 5 76 · 5 80 · 5	69 73 77	72 · 5 76 · 5 80 · 5	1143 1144 1145	$\begin{bmatrix} 171.5 \\ 175.5 \\ 179.5 \end{bmatrix} + 0 \\ -2.0$	180 · 5 184 · 5 188 · 5	177 181 185	180 · 5 184 · 5 188 · 5
1119° 1120 1121	$ \begin{bmatrix} 75.5 \\ 79.5 \\ 83.5 \end{bmatrix} +0 \\ -1.75 $	84 · 5 88 · 5 92 · 5	81 85 89	84 · 5 88 · 5 92 · 5	1146 1147 1148	$ \begin{vmatrix} 183 & 5 \\ 187 & 5 \\ 191 & 5 \end{vmatrix} +0 $ -2 · 0	192 · 5 196 · 5 200 · 5	189 193 197	192.5 196.5 200.5
1122 1123 1124	$ \begin{vmatrix} 87.5 \\ 91.5 \\ 95.5 \end{vmatrix} +0 \\ -2.0 $	96 · 5 100 · 5 104 · 5	93 97 101	96 · 5 100 · 5 104 · 5	1149 1150 1151	$ \begin{vmatrix} 195 & 5 \\ 199 & 5 \\ 203 & 5 \end{vmatrix} + 0 \\ -2 & 0 $	204 · 5 208 · 5 212 · 5	201 205 209	204 · 5 208 · 5 212 · 5
1125 1126 1127	$ \begin{vmatrix} 99.5 \\ 103.5 \\ 107.5 \end{vmatrix} +0 \\ -2.0 $	108:5 112:5 116:5	105 109 113	108 · 5 112 · 5 116 · 5	1152 1153 1154	$\begin{bmatrix} 207 & 5 \\ 211 & 5 \\ 215 & 5 \end{bmatrix} \begin{array}{c} +0 \\ -2 & 0 \end{array}$	216 · 5 220 · 5 224 · 5	213 217 221	216 · 5 220 · 5 224 · 5

This Specification was adopted by the Sectional Aircraft Committee on 3rd December, 1927, and approved on behalf of the Main Committee on 6th December, 1927.

NOTE.—In order to keep abreast of progress in the Industries concerned, the British Standard.

Specifications are subjected to periodical review.

Suggestions for improvements, addressed to the Secretary of the British Engineering Standards Association, 28, Victoria Street, London, S.W.1, will be welcomed at all times. They will be recorded and in due course brought to the notice of the Committees charged with the revision of the Specifications to which they refer.

Abstracted by permission of the British Engineering Standards Association from B.S. Specification 5 W. 3. official copies of which can be obtained from the Secretary of the Association, 28, Victoria Street, Westminster, S.W.1, price 8d., post free.

A.G.S. No. 652

STREAMLINE WIRES—contd.

In ordering, call up "A" length to nearest half-inch above calculated "A" length,

Size: & inch.

Ultimate Tensile Strength: 19.300 lb.

Thread: $\frac{9}{16}$ inch B.S.F. D = 2.5 inches.

Oval: T = 0.211 inch (min.); 0.228 inch (max.); R = 1.38 inches.

Area = 0.139 sq. in. (min.); W = 0.860 inch approx., not to exceed 0.95 in.

Part No. Prefix	В	Overall Length	For "A" betw	Lengths reen	Part No.	В	Overall Length			
A.G.S. 652	(With Limits)	of Blank	Min.	Max.		(With Limits)	of Blank	Min.	Max.	
10075	Inches	Inches	Inches	Inches		Inches	Inches	Inches	Inches	
1201	3.5)+0	12.5	9	12.5	1228	111.5 +0	120 .5	1117	120 - 5	
1202	1.0 > 0-	16.5	13	16.5	1229	115.5	124 - 5	121	124 . 5	
1203	11.5 -25	20.5	17	20.5	1230	119.5	128.5	125	128.5	
1204	15.5 +0	24.5	21	24.5	1231	123·5 +0	132.5	129	132 . 5	
1205	10.0	28.5	25	28.5	1232		136.5	133	136 - 5	
1206	23.6	32.5	29	32.5	1233	131.0)	140 . 5	137	140 - 5	
1207	27.5 + 0	36.5	33	36.5	1234	135.5 +0	144.5	141	144 5	
1208		40.5	37	40.5	1235	199.0 5 0 0	148.5	145	148.5	
1209	30.0	44.5	41	44 5	1236	149.0	152 - 5	149	152 · 5	
1210	39.5 +0	48.5	45	48.5	1237	147.5 +0	156-5	153	156.5	
1211	40 U / 1 A	52.5	49	52.5	1238	101.0 2 0 0	160 5	157	160 - 5	
1212	47.5	56.5	53	56.5	1239	100.0	164.5	161	164.5	
1213	51.5 +0	60 - 5	57	60.5	1240	159.5 +0	168 - 5	165	168 - 5	
1214		64.5	61	64 · 5	1241	100 0 0 0 0	172 - 5	169	172 - 5	
1215	09.0	68.5	65	68.5	1242	107.03	176.5	173	176 - 5	
1216	63.5 +0	72.5	69	72.5	1243	171 .5 +0	180 - 5	177	180 - 5	
1217		76.5	73	76-5	1244		184 - 5	181	184 - 5	
1218	71.0	80.5	77	80 . 5	1245	110.0	188.5	185	188 - 5	
1219	75.5 +0	84.5	81	84.5	1246	183.5 +0	192 - 5	189	192.5	
1220		88.5	85	88 - 5	1247	101.0 2 0.0	196 - 5	193	196-5	
1221	83.0	92.5	89	92.5	1248	1 101.0	200 - 5	197	200 - 5	
1222	87.5 +0	96.5	93	96.5	1249	195.5 +0	204.5	201	204 . 5	
1223	27.0 (6 0	100.5	97	100 - 5	1250	100 0 (_9.0	208.5	205	208 - 5	
1224	30.01	104.5	101	104.5	1251	203.0	212.5	209	212 - 5	
1225	99.5 +0	108.5	105	108 - 5	1252	207.5 +0	216.5	213	216.5	
1226	109.0 6 9.0	112-5	109	112.5	1253	211.5	220 - 5	217	220 . 5	
1227	107.5	116.5	113	116.5	1254	$211.5 \\ 215.5$ -2.0	224 - 5	221	224 . 5	

Specification:—The material for these Streamline Wires is to be to B.S. Spec. W. 3. All Streamline Wires to this drawing are to have a minimum tensile strength of 19,300 lbs.

STREAMLINE WIRES-contd.

A.G.S. No. 653.

In ordering, call up "A" length to nearest half-inch above calculated "A" length.

Size: 4 inch.

Thread: $\{ B.S.F. D = 2.8 \text{ inches.} \}$

Oval: T = 0.238 inch (min.); 0.254 inch (max.); R = 1.38 inches.

Area = 0.168 sq. inch (min.); W = 0.970 inch approx. Not to exceed 1.05 inch.

Part No. Prefix	В	Overall Length	For "A' betw		Part No.	o.	Overall Length			
A.G.S. 653	(With Limits)	of Blank	Min.	Max.		(With Limits)	of Blank	Min.	Max.	
	Inches	Inches	Inches	Inches		Inches	Inches	Inches	Inches	
1301	$\frac{3.5}{7.5}$ $+0$	13	9 - 5	13	1328	$\frac{111.5}{115.5}$ $+0$	121	117.5	121	
1302		17	13.5	17	1329	TIO 0 6 0 U	125	121.5	125	
1303	11.0	21	17.5	21	1330	119.0	129	125.5	129	
1304	$\frac{15.5}{10.5}$ +0	25	21.5	25	1331	$123.5 \\ 197.5 \\ +0$	133	129 5	133	
1305	10.0 /	29	25.5	29	1332	141 0 6 0 0	137	133 5	137	
1306	23'0)	33	29.5	33	1333	131 0	141	137 5	141	
1307	27.5 +0	37	33 5	37	1334	135.5 +0	145	141 5	145	
1308	01.0 7 06	41	37-5	41	1335	199 0 5 0 0	149	145.5	149	
1309	30.0	45	41.5	45	1336	143 5] -2.0	153	149.5	153	
1310	$\frac{39.5}{43.5}$ +0	49	45 5	49	1337	147.5 + 0	157 161	153 5 157 5	157	
1311	40.0 7 110	53	49.5	53 57	1338 1339	155 5 -2 0	165	161.5	161 165	
1312	47.5	57 61	53 · 5 57 · 5	61	1340	150 55	169	165.5	169	
1313 1314	51·5 55·5 +0	65	61.5	65	1341	100 5 1	173	169 5	173	
1314	59.5 -1.25	69	65.5	69	1342	167.5 [-2.0	177	173.5	177	
1316	200 PK	73	69.5	73	1343	191 E 1	181	177 5	181	
1317	07 E (+V	77	73.5	77	1344	105 5 (+0	185	181 5	185	
1318	71.5	81	77.5	81	1345	179.5 -2.0	189	185 - 5	189	
1319	DE EX	85	81.5	85	1346	100 E	193	189 5	193	
1320	70 F T TU	89	85.5	89	1347	107 6 +	197	193 - 5	197	
1321	83.5 -1.75	93	89.5	93	1348	191.5 -2.0	201	197.5	201	
1322	on ES	97	93.5	97	1349	105 55	205	201 5	205	
1323	A1 E (+U	101	97.5	101	1350	100 6 1 10	209	205 - 5	209	
1324	95.5 -2.0	105	101.5	105	1351	203 5 -2 0	213	209.5	213	
1325	00.55	109	105 - 5	109	1352	907 55	217	213.5	217	
1326	102 5 +0	113	109-5	113	1353	211.5 +0	221	217.5	221	
1327	107.5 -2.0	117	113.5	117	1354	215.5 -2.0	225	221.5	225	

Specification:—The material for these Streamline Wires is to be to B.S. Spec. W. 3. All Streamline Wires to this drawing are to have a minimum tensile strength of 23,630 lbs.

A.Q.S. No. 654.

STREAMLINE WIRES—contd.

In ordering, call up "A" length to nearest half-inch above calculated "A" length.

 $\label{eq:Size: $\frac{1}{16}$ inch.}$ Thread: \$\frac{1}{16}\$ B.S.F. \$D=3.0\$ inches. Oval: \$T=0.272\$ inch (min.); \$0.291\$ inch (max.); \$R=1.58\$ inches. Area = 0.217 sq. inch (min.); \$W=1.05\$ inches approx. Not to exceed 1.20 inches.

Part No.	В	Overall Length		'' Lengths ween	Part No.		Overali Length	For "A" Lengtl between	
	(With Limits)	of Blank	Min.	Max.		(With Limits)	of Blank	Min.	Max.
	Inches	Inches	Inches	Inches	Signal S	Inches	Inches	Inches	Inches
1401	$\frac{3.5}{7.5}$ \ +0	13.5	10	13-5	1428	111.5 +0	121.5	118	121 -5
1402		17.5	14	17.5	1429		125 5	122	125 5
1403	11:0	21.5	18	21.5	1430	119.5	129 5	126	129.5
1404	15.5	25.5	22	25 · 5	1431	123.5 +0	133.5	130	133 5
1405	100	29.5	26	29.5	1432	127.5	137 - 5	134	137 - 5
1406	23.0	33.5	. 30	33 .5	1433	131.5 -2.0	141.5	138	141 5
1407	27.5 +0	37 · 5	34	37.5	1434	135.5 +0	145.5	142	145 5
1408		41.5	38	41.5	1435		149.5	146	149 5
1409	00 0	45.5	42	45 5	1436	143.0	153 5	150	153 5
1410	39.5 +0	49.5	46	49.5	1437	147.5 +0	157.5	154	157 - 5
1411		53.5	50	53 5	1438	101 0 6 9.0	161 - 5	158	161-5
1412	47.03	57.5	54	57.5	1439	100-0	165 - 5	162	165.5
1413	51.5 55.5 +0	61.5	58	61 5	1440	159 5 +0	169.5	166	169 5
1414		65 5	62	65 5	1441	100.0 5 0 0	173 5	170	173 5
1415	09.01	69 5	66	69.5	1442	101.0)	177:5	174	177 5
1416	63.5 +0	73 5	70	73 5	1443	171.5	181 - 5	178	181 - 5
1417	0107 12	77 .5	74	77 - 5	1444	110.0 / 0.0	185.5	182	185 5
1418	11.0	81.5	78	81 . 5	1445	119.9	189.5	186	189 5
1419	75.5	85.5	82	85 · 5	1446	183.5 +0	193 5	190	193 5
1420	100 7 7 66	89.5	86	89 5	1447	101.0 . 0 0	197.5	194	197 - 5
1421	09.0	93.5	90	93 5	1448	101.0	201 5	198	201 5
1422	87.5 +0	97.5	94	97.5	1449	195.5 +0	205 5	202	205 - 5
1423	01 0 6 0 0	101.5	98	101 5	1450	100 0 6 0 0	209 5	206	209.5
1424	00.01	105.5	102	105-5	1451		213.5	210	213.5
1425	99.5 \ +0	109.5	106	109 5	1452	207.5 +0	217.5	214	217.5
1426	100.0 4 0 0	113.5	110	113 5	1453	211.5	221 5	218	221 - 5
1427	107.5	117.5	114	117.5	1454	$211.5 \atop 215.5$ -2.0	225 - 5	222	225 - 5

Specification:—The material for these Streamline Wires is to be to B.S. Spec. W.3. All Streamline Wires to this drawing are to have a minimum tensile strength of 29,610 lbs. The screw threads are to be in accordance with the British Standard Fine Screw Threads as given in the British Engineering Standards Association Report No. 84, Table II.

A.G.S. No. 655.

STREAMLINE WIRES—contd.

In ordering, call up "A" length to nearest half-inch above calculated "A" length.

Size: 1 inch.

Thread: $\frac{3}{4}$ B.S.F. $D = 3 \cdot 2$ in.

Oval: T = 0.302 inch (min.); 0.313 inch (max.); R = 1.58 inches.

Area = 0.248 sq. in. (min.); $\dot{W} = 1.16$ inches approx. Not to exceed 1.25 inches.

Part No. Prefix	В	Overall Length	For "A" betw		Part No.	В	Overall Length	For "A'	
A.G.S. 655	(With Limits)	of Blank	Min.	Max.		(With Limits)	of Blank	Min.	Max.
24.07.63	Inches	Inches	Inches	Inches	134.34	Inches	Inches	Inches	Inches
1501	3.5)	14	10.5	14	1528	111.5)+0	122	118.5	122
1502	7.5 +0	18	14.5	18	1529	110 0 > 0 0	126	122 .5	126
1503	11.0	22	18.5	22	1530	119 6]	130	126.5	130
1504	15.5 +0	26	22.5	26	1531	123.5 +0	134	130 - 5	134
1505	100/	30	26.5	30	1532	1410 6 9.0	138	134.5	138
1506	23 5 J	34	30.5	34	1533	131.5	142	138·5 142·5	142 146
1507	$\frac{27.5}{31.5}$ +0	38	34.5	38	1534	135.5 +0	146	142.5	150
1508	01 0 75	42	38 5	42	1535	100 0 7 0.0	150 154	150.5	154
1509	35 - 5]	46	42.5	46	1536	143.5	158	154.5	158
1510	$\frac{39.5}{43.5}$ +0	50	46 5	50	1537	147.5 +0	162	158.5	162
1511	100	54	50.5	54	1538	151.5	166	162.5	166
1512	7 TIO J	58	54.5	58	1539 1540	100 05	170	166.5	170
1513	51.5 +0	62	58.5 62.5	62 66	1541	100 5 70	174	170 5	174
1514	1.95	66	66.5	70	1542	167.5 -2.0	178	174.5	178
1515	63.5	70 74	70.5	74	1543		182	178.5	182
1516	07 = 1-0	78	74.5	78	1544	100 E TU	186	182.5	186
1517 1518	71.5 -1.5	82	78.5	82	1545	179.5 -2.0	190	186 - 5	190
1519	72 E	86	82.5	86	1546	200 85	194	190 - 5	194
1520	70 E (+ U	90	86.5	90	1547	100 5 1 10	198	194.5	198
1521	83.5 -1.75	94	90.5	94	1548	191.5 -2.0	202	198-5	202
1522	O7 E	98	94.5	98	1549	105.55	206	202 - 5	206
1523	01 - 1 + 0	102	98.5	102	1550	100 - 1 - 0	210	206 - 5	210
1524	95.5	106	102.5	106	1551	203.5	214	210 5	214
1525	00 =	110	106.5	110	1552	007.5	218	214.5	218
1526	100 - 1 + 0	114	110.5	114	1553	211.5	222	218 5	222
1527	103.5	118	114.5	118	1554	215.5 -2.0	226	222 - 5	226

Specification: — The material for these Streamline Wires is to be to B.S. Spec. W. 3. All Streamline Wires to this drawing are to have a minimum tensile strength of 34,520 lbs.

A.G.S. No. 656.

STREAMLINE WIRES—contd.

In ordering, call up "A" length to nearest half-inch above calculated "A" length.

Size: 7 inch.

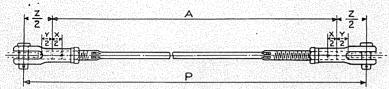
Thread: 7 B.S.F. D = 3.5 inches.

Oval: T = 0.363 inch (min.); 0.385 inch (max.); R = 1.80 inches.

Area = 0.358 sq. inch (min.); W = 1.27 inches approx. Not to exceed 1.50 inches.

Part No.	В	Overall Length			Part No.	В	Overall Length	For "A' bety	'Length
	(With Limits)	of Blank	Min.	Max.		(With Limits)	of Blank	Min.	Max.
	Inches	Inches	Inches	Inches		Inches	Inches	Inches	Inches
1601	$\frac{3}{5}$ $\frac{5}{5}$ $+0$	14.5	11	14.5	1628	111.5 +0	122 5	119	122 - 5
1602	0.0	18.5	15	18.5	1629	115 5	126.5	123	126.5
1603	11.0	22 5	19	22.5	1630	119.5	130.5	127	130 - 5
1604	$\frac{15.5}{10.5} + 0$	26.5	23	26.5	1631	123.5 +0	134 - 5	131	134 5
1605	10 0 / -	30 5	27	30 - 5	1632	127.5	138 5	135	138.5
1606		34.5	31	34 5	1633	191.0	142.5	139	142 - 5
1607	27.5 +0	38.5	35	38-5	1634	135.5	146.5	143	146 5
1608	OT O L ME	42.5	39	42.5	1635	139.5	150 - 5	147	150 . 5
1609	00 0)	46.5	43	46.5	1636	143 5	154.5	151	154 5
1610	30.5 +0	50.5	47	50 · 5	1637	147.5 +0	158 - 5	155	158 - 5
1611	2007 7 7 0	54:5	51	54 5	1638	101 0 6 0.0	162 . 5	159	162.5
1612	4//0 J	58 5	55	58 5	1639	100.0	166.5	163	166 . 5
1613	51 5 +0	62.5	59	62.5	1640	159.5 +0	170 - 5	167	170 5
1614	00 0 7 1 05	66 5	63	66.5	1641	100.0 6 9 0	174.5	171	174 5
1615	09.0	70.5	67	70 5	1642	101 0	178 5	175	178 5
1616	63.5 +0	74.5	71	74.5	1643	171 5 +0	182 - 5	179	182 - 5
1617	0107 7	78.5	75	78.5	1644	110.0 5 0 0	186 - 5	183	186 - 5
1618	71.0	82.5	79	82 5	1645	114.01	190.5	187	190.5
1619	75.5 +0	86.5	83	86 5	1646	183.5 +0	194.5	191	194.5
1620	1007 1 00	90.5	87	90.5	1647	101.0 6 0	198.5	195	198 5
1621	00.0	94.5	91	94 5	1648	191.5	202 - 5	199	202 5
1622	87.5 +0	98.5	95	98.5	1649	195.5 +0	206 - 5	203	206 - 5
1623	01 0 7 0 0	102.5	99	102 - 5	1650	100 0 0 0 0	210 5	207	210.5
1624	90.0	106.5	103	106.5	1651	203.5 -2.0	214 5	211	214 5
1625	99.5 +0	110 5	107	110.5	1652	207.5 +0	218 5	215	218 5
1626	10000	114 5	111	114.5	1653	211 0 7 0 0	222.5	219	222 - 5
1627	107.5 -2.0	118.5	115	118.5	1654	215.5 -2.0	226 - 5	223	226 . 5

Specification:—The material for these Streamline Wires is to be to B.S. Spec. W.3. All Streamline Wires to this drawing to have a minimum tensile strength of 48,190 lbs. The screw threads are to be in accordance with the British Standard Fine Screw Threads as given in the British Engineering Standards Association Report No. 84, Table II.



FINISHED
TIE RODS
SCREWED

FINISHED TIE RODS (SCREWED)

NOTE.—When ordering finished tie rods, only the Specification Number, Part Number, and the required Overall Length to the nearest even half inch should be quoted. (If the calculated length "A" (see sketch) be not an even inch or half-inch, then the nearest half-inch above "A" should be quoted.

 $A = P \cdot Z$

Where P = Calculated Pin Centres.

and Z = Figure shewn in Table below for the respective sizes of Tie Rods.

VALUE Z.

For Plain Forks to B.S. Specification 2 SP. 3.

	Control of the Contro	and the state of the state of	ayang ya 🏲 garan taga at hasa segati 🗕	and a second second second
	Size of Tie Rod	z	Size of Tie Rod	Z
1	4 B.A.	In. 1 · 07	H inch B.S.F.	In. 2·09
1	2 B.A. inch B.S.F.	1 · 31 1 · 58	inch ,,	2·33 2·67
	inch " inch "	1 · 55 1 : 85	inch ,,	2·81 3·00
	is inch "	2.04	½ inch "	3.12

The figures for the Maximum "Outward" and "Inward" adjustment (X and Y) which correspond with the above values for Z are given in the following Table:—

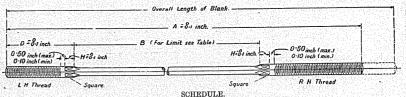
Type of End Fitting	Adjust- ment	4 B.A.	2 B.A.	⅓ in. B.S.F.	l in. B.S.F.	å in. B.S.F.	∯ in. B.S.F.	<u> </u>	in. B.S.F.	∰ in. B.S.F.	7 in. B.S.F.	∰ in. B.S.F.	<u>կ</u> in. B.S.F.	
Plain Forks to B.S. Specifica- tion 2 SP. 3	X	1450	500	14.4	100	in. 0·75	\$250. J.C.C.	S114564	1000	11000		52.40E	1000	

EXAMPLES :-

- (1) Suppose that for a \(\frac{1}{4}\) inch tie rod the calculated length "A" = 61 \(\frac{1}{4}\) inches.

 The finished length "A" to the nearest half-inch above is 61 \(\frac{5}{4}\) inches and should be ordered thus :—
 - "B.S. Specification 5 W. 8, Part No. 1514, 'A' 61.5 in."
- (2) Suppose that for a \(\frac{\gamma}{6}\) inch tie rod \(A = 52\) \(\frac{1}{2}\) inches.

 As this length is not between an even inch or half-inch it may be quoted as the finished length, thus:-
 - "B.S. Specification 5 W. 8, Part No. 1712, 'A' 52.0 in."


Abstracted by permission of the British Engineering Standards Association from B.S. Specification 5 W. 8, official copies of which can be obtained from the Secretary of the Association, 23, Victoria Street, Westminster, S.W.1, price 8d., post free.

SWAGED TIE RODS

5 W 8 January, 1928.

(Cancelling B.S. Specification 4 W. 8.)

Ultimate Tensile Strength: 1,050 lb. Size: 4 B.A. Thread: No. 4 B.A. D = 1.85 inches. H = 0.16 inch. Width across flats of Square = 0.11 ± 0.002 inch. Diam. of Swaged Part = $0.104 \frac{-0}{+0.006}$ inch. Area of Swaged Part = 0.0085 sq. inch.

Part	В	Overall Length	For "A" Lengths between		Part No	В	Overall Length	For "A'	Lengths
No.	(With Limits)	of Blank	Min.	Max.	No.	(With Limits)	of Blank	Min.	Max.
	Inches	Inches	Inches	Inches		Inches	Inches	Inches	Inches
1201	10 10 0 YES MESSES	9.5	7	9.5	1211	42)	49.5	46	49.5
1202	o UTV	13.5	10	13.5	1212	46	53.5	50	53 5
1203	10 ∫—·25	17.5	14	17.5	1213	50	57.5	54	57.5
1200	200	150000			1214	EARL TO	61.5	58	61.5
1204	14)	21.5	18	21.5	1215	58 -75	65 . 5	62	65 - 5
1205	18	25.5	22	25.5	1216	62	69 - 5	66	69 - 5
1206	22 .	29.5	26	29.5	1217	66	73 5	70	73 - 5
1200	+0		Server.	Termina (1218	701	77.5	74	77 . 5
1207	26 (5	33.5	30	33 - 5	1219	7.7	81.5	78	81.5
1208	30	37.5	34	37.5	1220	78 +0	85 - 5	82	85.5
1200	34	41 5	38	41.5	1221	78 +0 82 -1·0	89 - 5	86	89 5
1910	38	45.5	42	45.5	1222	86	93.5	90	93 5

Size: 2 B.A. Ultimate Tensile Strength: 1,900 lb. Thread: No. 2 B.A. D = 1 90 inches. H = 0 20 inch. Width across flats of Square = 0 14 \pm 0 002 inch.

Diam. of Swaged Part = $0.128 \frac{-0}{+0.006}$ inch. Area of Swaged Part = 0.0129 sq. inch.

Part	В	Overall Length	For "A' betw		Part	В		Overall Length		
No.	(With Limits)	of Blank	Min.	Max.	No.	(With	Limits)	of Blank	Min.	Max.
	Inches	Inches	Inches	Inches	35 77 75	In	ches	Inches	Inches	Inches
1301	3)	9.5	7.00	9.5	1311	42)		49.5	46	49.5
1302	0 +0	13.5	10	13 5	1312	46		53.5	50	53.5
1303	10 -25	17.5	14	17.5	1313	50		57.5	54	57.5
		125040	小路線線線	AND AGEN	1314	54	+0	61-5	58	61 . 5
1304	14)	21.5	18	21.5	1315	58	—·75	65.5	62	65.5
1305	18	25.5	22	25 5	1316	62		69.5	66	69.5
1306	22	29.5	26	29.5	1317	66		73.5	70	73 5
1000	~~ +0		10.7		1318	701	7-2-6-5	77.5	74	77.5
1307	265	33 - 5	30	33 - 5	1319	74		81.5	78	81.5
1308	30	37.5	34	37.5	1320	78	+0	85.5	82	85.5
1309	34	41.5	38	41.5	1321	82	1·0	89.5	86	89.5
1310	38	45.5	42	45.5	1322	86		93.5	90 .	93.5

Abstracted by permission of the Brilish Engineering Standards
Association from B.S. Specification 5 W. 8, official copies of which can
be obtained from the Servatory of the Association, 28, Victoria Street,
Westminter, S.W.1, price 8d., post free.

5 W. 8 January, 1928.

SWAGED TIE RODS-contd.

(Cancelling B.S. Specification 4 W. 8.)

Part No.	В	Overall Length	For "A' bety	'Lengths veen	Part No.	B Overall Length		i.	
	(With Limits)	of Blank	Min.	Max.		(With Limits)	of Blank	Min.	Max.
	Inches	Inches	Inches	Inches	32.00	Inches	Inches	Inches	Inches
1402	67+0	13.5	10	13.5	1445	178)	185 - 5	182	185 - 5
1403	10 ∫ — 25	17.5	14	17.5	1446	182 +0	189 - 5	186	189-5
(A) (S)		Problem.	STREET,	944 V 8 X 8	1447		193.5	190	193 5
1404	14)	21.5	18	21.5	1448	190	197 - 5	194	197.5
1405	18	25 5	22	25 5	1449	194	201 5	198	201 . 5
1406	22 28 +0	29.5	26	29-5	1450	198 ֆ	205.5	202	205 - 5
1407		33 - 5	30	33.5	1451	202	209 - 5	206	209 5
1408	30	37.5	34	37.5	1452	206	213 .5	210	213 5
1409	34	41.5	38	41.5	1453	210	217 - 5	214	217.5
1410	38 42	45.5	42	45.5	1454	214	221 - 5	218	221 - 5
1411		49.5	46	49.5	1455	218	225 · 5	222	225 · 5
1412	46	53 - 5	50	53.5	1456	222	229 5	226	229 - 5
1413 1414	50 +0	57.5	54	57.5	1457	226	233 - 5	230	233 - 5
1415	54 \ —:75	61.5	58	61.5	1458	230	237 . 5	234	237 . 5
1416	62	65 - 5	62	65.5	1459	234	241.5	238	241 5
1417	66	69 - 5	66	69.5	1460	238	245 5	242	245.5
1418	701	73.5	70	73.5	1461	242	249 . 5	246	249.5
1419	100 mg/	77 - 5	74	77.5	1462	246	253 - 5	250	253 . 5
1420	78 +0	81.5	78	81 .5	1463	250	257 . 5	254	257.5
1421	82 (-1 0	85 · 5 89 · 5	82	85.5	1464	254	261 .5	258	261 . 5
1422	86		86	89.5	1465	258	265 - 5	262	265-5
1423	90	93·5 97·5	90	93.5	1466	262	269 - 5	266	269.5
1424	941	101.5	94 98	97·5 101·5	1467 1468	266 270	273 - 5	270	273 . 5
1425	98	105.5	102	101.5			277.5	274	277.5
1426	102	100.5	102		1469	274 -2 0	281 - 5	278	281 - 5
1427	100	113.5	110	109·5 113·5	1470 1471	282	285 - 5	282 286	285 - 5
1428	110 (+0	117.5	114	117.5	1472	286	289 - 5		289 5
1429	114 (-1.25	121 5	118	121.5	1473	290	293 - 5	290	293 - 5
1430	118	125.5	122	125.5	1474	294	297 5 301 5	294 298	297 · 5 301 · 5
1431	122	129 5	126	129.5	1475	298	305.5	302	
1432	126	133 5	130	133.5	1476	302	309.5	302	305 · 5
1433	130	137.5	134	137.5	1477	306	313.5	310	313.5
1434	134	141.5	138	141.5	1478	310	317.5	. 314	317.5
1435	138	145.5	142	145.5	1479	314	321 5	318	321.5
1436	140	149 5	146	149.5	1480	318	325 5	322	325.5
1437	140 1 70	153 5	150	153.5	1481	322	329 5	326	329 - 5
1438	150 -1.5	157 - 5	154	157.5	1482	326	333 5	330	333.5
1439	154	161 -5	158	161.5	1483	330	337.5	334	337 - 5
1440	158	165.5	162	165 5	1484	334	341.5	338	341.5
1441	162	169 5	166	169 5	1485	338	345.5	342	345.5
1442	1005	173 5	170	173.5	1486	342	349.5	346	349.5
1443	170 (+0	177.5	174	177 5	1487	346	353 5	350	353 - 5
1444	174 -1.75	181.5	178	181 - 5	1488	350	357.5	354	357 - 5

Abstracted by permission of the British Engineering Standards Association from B.S. Specification 5 W. 8, official copies of which can be obtained from the Secretary of the Association, 28, Victoria Street, Westminster, S.W.1, price 8d., post free.

SWAGED TIE RODS-contd.

5 W. 8. January, 1928.

(Cancelling B.S. Specification 4 W. 8.)

 $\begin{array}{c} \text{(Cancelling B.S. Specification} \\ \text{Size: $\frac{1}{4}$ inch.} \\ \text{Ultimate Tensile Strength: $3,450$ lb.} \\ \text{Thread: $\frac{1}{4}$ inch, B.S.F. D=$\frac{2}{2}$ 10 inches. $H=0.20$ inch.} \\ \text{Width across flats of Square} = 0.19 \pm 0.002$ inch.} \\ \text{Diam. of Swaged Part} = 0.171 \frac{0}{+0.007}$ inch. Area of Swaged Part} = 0.0230$ sq. inch.} \\ \end{array}$

Part No.	В	Overall Length	For "A" betw	or "A" Lengths hetween Part B No. (With Limit		between Part B Over		B (With Limits)		No.		Overall Length	For "A" betw	
	(With Limits)	of Blank	Min.	Max.		(With	Limits)	of Blank	Min.	Max.				
1502 1503 1504 1505 1506 1506 1507 1508 1609 1610 1611 1612 1613 1614 1616 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1632 1632 1632 1632 1632 1632	158 162 166 170 +0	Inches 14 18 22 30 34 38 42 46 50 50 64 58 62 66 70 74 78 82 86 90 94 114 118 112 122 126 130 134 138 142 146 146 146 146 146 166 170 174	Inches 10.5 14.5 18.5 22.5 26.5 30.5 34.5 38.5 42.5 46.5 55.5 54.5 58.5 57.5 58.5 70.5 78.5 80.5 74.5 80.5 100.5 114.5 118.5 120.5 130.5 134.5 138.5 138.5 138.5 148.5 138.5 148.5 158.5 168.5 168.5 168.5 168.5 168.5 168.5 168.5 168.5 168.5 168.5 168.5 168.5 178.5 178.5 178.5	Inches 14 18 22 26 30 34 38 42 46 60 64 65 62 66 70 74 8 82 86 90 94 98 102 106 110 114 118 122 126 130 134 138 142 146 150 154 158 162 166 170 174 178	1545 1546 1547 1549 1550 1551 1552 1556 1556 1556 1556 1556 1556	178 188 180		Inches 186 190 194 194 198 202 206 210 214 218 222 226 230 234 238 242 246 250 254 258 262 266 270 274 278 282 286 290 244 238 302 306 310 314 318 322 323 334 338 342 346 356	Inches 182.5 180.5 190.5 190.5 190.5 194.5 206.5 210.5 214.5 224.5 226.5 224.5 224.5 230.5 234.5 234.5 238.5 242.5 246.5 247.5 258.5 266.5 270.5 274.5 278.5 288.5 274.5 288.5 274.5 288.5 274.5 288.5 274.5 288.5 274.5 288.5 388.5 388.5 388.5 388.5 388.5 388.5 388.5 388.5 388.5 388.5 388.5	Inches 186 199 199 199 199 199 199 199 199 199 19				

Abstracted by permission of the British Engineering Standards Association from B.S. Specification 5 W. 8, official copies of which can be obtained from the Secretary of the Association, 28, Victoria Street, Westminster, S.W.1, price 5d., post free.

5 W. 8. January, 1928.

SWAGED TIE RODS-contd.

(Cancelling B.S. Specification 4 W. 8.)

Size: $\frac{1}{2}$ inch.

Ultimate Tensilo Strength: 4,650 lb.

Thread: $\frac{1}{2}$ inch, B.S.F. $D=2\cdot 25$ inches. $H=0\cdot 26$ inch.

Width across flats of Square $=0\cdot 22\pm 0\cdot 002$ inch.

Diam. of Swaged Part $=0\cdot 207\cdot -008$ inch. Area of Swaged Part $=0\cdot 0337$ sq. inch.

Part No.	В	Overall Length	No.		No.		For "A' betw	' Length reen	
	(With Limits)	of Blank	Min.	Max.		(With Limits)	of Blank	Min.	Max.
	Inches	Inches	Inches	Inches		Inches	Inches	Inches	Inches
1602	6]+0	14	10.5	14	1645	178)	186	182.5	186
1603	10 } 25	18	14.5	18	1646	182 +0	190	186.5	190
1235345		10000	150,000	200	1647		194	190 - 5	194
1604	14)	22	18.5	22	1648	190	198	194.5	198 202
1605	18	26	22 . 5	26	1649	194	202	198.5	202
1606	22 +0	30	26.5	30	1650	198	206	202 .5	206 210
1607	40 / 4	34	30 · 5	34	1651	202	210	206 - 5	210
1608	30 - 9	38	34 . 5	38	1652	206	214	210 5	914
1609	34	42	38 5	42	1653	210	218	214 5	218 222 226
1610 1611	38 42	46	42.5	46	1654	214	222	218.5	222
1612		50	46.5	50	1655	218	226	222.5	226
	46	54	50.5	54	1656	222	230	226.5	230
1613 1614	50 +0	58	54.5	58	1657	226	234	230 5	234
1615	58 -75	62	58.5	62	1658	230	238	234.5	238
1616	62	66	62.5	66	1659	234	242	238.5	242
1617		70	66.5	70	1660	238	246	242 5	246
1618	66 J 70 \	74	70.5	74	1661	242	250	246.5	250
1619	70 74	78	74.5	78	1662	246	254	250 · 5	254
1620	79	82	78.5	82	1663	250	258	254.5	258
1621	78 \ +0 82 (-1.0	86	82.5	86	1664	254	262	258 · 5	262
622	86 -1.0	90	86 5	90	1665	258	266	262 - 5	266
623	90	94	90.5	94	1666	262	270	266 - 5	270
624	90)	98 102	94.5	98	1667	266	274	270 - 5"	274
625	98	102	98.5	102	1668	270 +0	278	274.5	278
626	102	110	102·5 106·5	106	1669	414 7 0 0	282	278 5	282
627	100	114	110.5	110 114	1670 1671	278 -2.0 282	286	282 - 5	286
628	110 (+0	118	114.5				290	286 - 5	290
629	114 -1.25	122	118.5	118 122	1672	286	294	290 5	294
630	118	126	122.5	122	1673	290	298	294.5	298
631	122	130	126.5	130	1674 1675	294 298	302 306	298.5	302
632	126	134	130.5	134	1676	302		302 5	306
633	130	138	134.5	134	1677	302	310	306.5	310
634	134	142	134.5	138	1678	306	314	310.5	314
635	138	146	142.5	142		314	318	314.5	318
636	140	150	146.5	150	1679 1680	318	322	318.5	322
637	146 (+0	154	150.5	154	1681	318	326 330	322 · 5 326 · 5	326 330
638	150 [-1.5	158	154.5	158	1682	326	334	330.5	330 334
639	154	162	158.5	162	1683	330	338	334.5	338
640	158	166	162.5	166	1684	334	342	338.5	342
641	162	170	166.5	170	1685	338	346	342.5	342
642	1005	174	170.5	174	1686	342	350	346.5	350
643	170 L TU	178	174.5	178	1687	346	354	350.5	354
644	174 (-1.75	182	178.5	182	1688	350	358	354.5	354

Abstracted by permission of the Brilish Engineering Standards Association from B.S. Specification 5 W. 8, official copies of which can be obtained from the Secretary of the Association, 23, Victoria Street, Vestminuter, S.W.1, price 8d., post free.

SWAGED TIE RODS-contd.

5 W. 8. January, 1928.

(Cancelling B.S. Specification 4 W. 8.)

 $\begin{array}{ccc} Size: \frac{1}{M} inch. \\ Ultimate Tensile Strength: 5,700 lb. & \\ Thread: \frac{1}{M} inch, B.S.F. & D=2\cdot35 inches. H=0\cdot26 inch. \\ Width across flats of Square=0\cdot26\pm0\cdot002 inch. \end{array}$

Diam, of Swaged Part = 0.223 + 0.009 inch. Area of Swaged Part = 0.0391 sq. inch.

Part No.	В	Overall Length			Part No.	В	Overall Length	For "A' betw	
	(With Limits)	of Blank	Min.	Max.		(With Limits)	of Blank	Min.	Max.
169-37	Inches	Inches	Inches	Inches	34.0	Inches	Inches	Inches	Inches
1703	10 +0	18.5	15	18.5	1745	178)	186.5	183	186 - 5
76 Feb	25	Yes a first		44.5	1746	182	190 5	187	190 8
1704	14)	22.5	19	22.5	1747	186 +0	194.5	191	194 6
1705	18	26.5	23	26.5	1748	190	198.5	195	198 €
1706	90	30.5	27	30.5	1749	194	202 5	199	202 - 5
1707	96 € + 0	34.5	31	34.5	1750	1981	206 . 5	203	206 - 5
1708	30 - 5	38.5	35	38 5	1751	202	210.5	207	210 -
1709	34	42.5	39	42.5	1752	206	214.5	211	214 . 5
1710	38	46.5	43	46.5	1753	210	218.5	215	218 - 5
1711	421	50.5	47	50.5	1754	214	222.5	219	222 - 6
1712	46	54.5	51	54.5	1755	218	226.5	223	226 -
1713	EDICE TO THE STATE OF THE	58.5	55	58 5	1756	222	230 5	227	230 ⋅ 5
1714	E4 (+V	62.5	59	62 5	1757	226	234 5	231	234 - 5
1715	58 -75	66.5	63	66.5	1758	230	238 - 5	235	238 -
1716	62	70.5	67	70.5	1759	234	242.5	239	242 -
1717	66	74.5	71	74.5	1760	238	246.5	243	246 -5
1718	701	78.5	75	78.5	1761	242	250 - 5	247	250 -
		82.5	79	82.5	1762	246	254 5	251	254 - 6
1719	74	86.5	83	86.5	1763	250	258 5	255	258 -
1720	78 +0	90.5	87	90-5	1764	254	262.5	259	262 ⋅ €
1721	82 [-1 0	94.5	91	94.5	1765	258	266 5	263	266 -
1722	86		95	98.5	1766	262	270.5	267	270 -
1723	90	98.5	95	102.5	1767	266	274.5	271	274
1724	94)	102.5		102.5	1768	070	278.5	275	278 8
1725	.98	106 - 5	103	110 5	1769	074	282.5	279	282
1726	102	110 5	107 111	114.5	1770	278 -2.0	286.5	283	286
1727	$\begin{vmatrix} 106 \\ 110 \\ -1 \cdot 25 \end{vmatrix}$	114.5		118.5	1771	282	290.5	287	290 -
1728	110 \ +0	118-5	115			286	294 5	291	294
1729		122.5	119	122.5	1772	280 290	298 5	295	298
1730	118	126.5	123	126 5	1773	294	302 5	299	302 -
1731	122	130 - 5	127	130.5	1774			303	306 -
1732	126	134 · 5	131	134 5	1775	298	306.5	303	310 -
1733	130 \	138 - 5	135	138.5	1776	302	310.5	311	314
1734	134	142.5	139	142.5	1777	306	314.5	311	314
1735	138	146.5	143	146.5	1778	310	318.5	310	318 -
1736	142 +0	150 - 5	147	150 - 5	1779	314	322 5	319	320
1737	140 / 1 /	154 - 5	151	154 5	1780	318	326.5	323	
1738	150	158 - 5	155	158 5	1781	322	330 - 5	327	330 -
1739	154	162 - 5	159	162.5	1782	326	334.5	331	334 -
1740	158	166 - 5	163	166.5	1783	330	338 - 5	335	338
1741	162	170 - 5	167	170.5	1784	334	342 5	339	342
1742	166	174.5	171	174 5	1785	338	346 5	343	346
1743	170 +0	178.5	175	178.5	1786	342	350 - 5	347	350 -
1744	174 -1.75	182.5	179	182 - 5	1787	346	354 . 5	351	354
					1788	350	358 5	355	358

Abstracted by permission of the British Engineering Standards Association from B.S. Specification 5 W. 8, official copies of which can be obtained from the Secretary of the Association, 28, Victoria Street, Westminster, S. W.1, price 8d., post free.

5 W. 8. January, 1928.

SWAGED TIE RODS-contd.

(Cancelling B.S. Specification 4 W. 8.)

 $Size: \begin{tabular}{ll} Size: $\frac{11}{2}$ inch. \\ Ultimate Tensile Strength: 7,150 lb. \\ Thread? $\frac{11}{2}$ inch, B.S.F. D = 2.40 inches. H = 0.32 inch. \\ Width across flats of Square = 0.23 <math display="inline">\pm$ 0.002 inch.

Diam. of Swaged Part = 0.251 ± 0.009 inch. Area of Swaged Part = 0.0495 sq. inch.

Part No.	В	Overall Length	For "A' bety	' Lengths veen	Part No.	B	Overall Length	For "A"	Lengthi cen
	(With Limits)	of Blank	Min.	Max.		(With Limits)	of Blank	Min.	Max.
16250	Inches	Inches	Inches	Inches		Inches	Inches	Inches	Inches
1803	10 +0	18.5	15	18.5	1845	178)	186-5	183	186 5
VALL	25	LEASTERN.	EGASSAS.		1846	100	190.5	187.	190 - 5
1804	14)	22.5	19	22-5	1847	100 1 +0	194.5	191	194.5
1805	18	26.5	23	26 5	1848	190 -1.75	198.5	195	198.5
1806	22 +0	30.5	27	30 5	1849	194	202.5	199	202 - 5
1807	20 /	34 5	31	34.5	1850	198)	206-5	203	206.5
1808	30	38.5	35	38-5	1851	202	210.5	207	210.5
1809	34	42.5	39	42.5	1852	206	214 5	211.	214.5
1810	38	46.5	43	46.5	1853	210	218 5	215	218.5
1811	42)	50.5	47	50.5	1854	214	222.5	219	222 - 5
1812	46	54.5	51	54 5	1855	218	226.5	223	226 5
1813 1814	50 +0	58.5	55	58-5	1856	222	230 5	227	230 - 5
1815	5875	62 5	59	62.5	1857	226	234 · 5	231	234 5
1816	62	66·5 70·5	63 67	66.5	1858	230	238 5	235	238 5
1817	66	74.5	71	70·5 74·5	1859	234	242 5	239	242 5
1818	70)	78.5	75	78.5	1860 1861	238 242	246.5	243	246 5
1819	74	82.5	79	82.5	1862	242	250.5	247	250 - 5
1820	78 +0	86.5	83	86-5	1863	250	254 - 5	251	254 · 5
1821	82 (-1.0	90.5	87	90 5	1864	254	258 5 262 5	255 259	258 5
1822	86	94.5	91	94.5	1865	258	266-5	209	262 · 5 266 · 5
1823	90	98.5	95	98.5	1866	262	270.5	263 267	270.5
1824	94 \	102 - 5	99	102 5	1867	266	274.5	271	274.5
1825	98	106.5	103	106.5	1868	970	278.5	275	278.5
1826	102	110.5	107	110.5	1869	974	282-5	279	282 5
1827	700	114.5	111	114-5	1870	278 (-2.0	286-5	283	286 - 5
1828	$\begin{vmatrix} 106 \\ 110 \\ -1.25 \end{vmatrix}$	118.5	115	118-5	1871	282	290 5	287	290 5
1829	LIT.	122.5	119	122-5	1872	286	294.5	291	294.5
1830	118	126 5	123	126 5	1873	290	298-5	295	298 - 5
1831	122	130 5	127	130 5	1874	294	302 - 5	299	302 5
1832	126	134.5	131	134 5	1875	298	306.5	303	306 - 5
1833	130)	138 - 5	135	138 5	1876	302	310.5	307	310.5
1834	134	142 - 5	139	142.5	1877	306	314.5	311	314.5
1835	138	146.5	143	146 5	1878	310	318.5	315	318-5
1836	142 +0	150 - 5	147	150 - 5	1879	314	322 - 5	319	322 - 5
1837	140 / 1 /	154 5	151	154-5	1880	318	326 5	323	326 5
1838 1839	150 -1.5 154	158·5 162·5	155	158.5	1881	322	330 · 5	327	330 5
1840	154	162.5	159	162.5	1882	326	334 5	331	334 5
1841	162	170.5	163	166 5	1883	330	338 5	835	338 5
1842	166)	170 5	167 171	170 - 5	1884	334	342.5	339	342 5
1843	100 1	178.5	171	174 5	1885	338	346 5	343	346 - 5
1844	174 -1.75	182.5	175	178 · 5 182 · 5	1886	342	350 - 5	347	350 5
TOXX	1111	102.0	119	102.0	1887 1888	346 350	354 · 5 358 · 5	351	354.5

Abstracted by permission of the British Engineering Standards Association from B.S. Specification 5 W. 8, official copies of which can be obtained from the Secretary of the Association, 28, Victoria Street, Westminster, S.W. 1, price 8d., post free.

SWAGED TIE RODS-contd.

5 W. 8. January, 1928.

(Cancelling B.S. Specification 4 W. 8.)

Size: $\frac{3}{4}$ inch.

Ultimate Tensile Strength: 8,500 lb.

Thread: $\frac{3}{4}$ inch, B.S.F. $D=2\cdot 50$ inches. $H=0\cdot 32$ inch.

Width across flats of Square = 0 : 30 \pm 0 : 002 inch.

Width across flats of Square = 0.30 ± 0.002 inch.

Diam. of Swaged Part = $0.274 \frac{-0}{+0.010}$ inch. Area of Swaged Part = 0.0590 sq. inch.

Part No.	В	Length No.		В	Overall Length		r "A" Lengths between			
	(With Limits)	of Blank	Min.	Max.		(With	Limits)	of Blank	Mîn.	Max.
233	Inches	Inches	Inches	Inches	38.0%		ches	Inches	Inches 183	Inches 186 · 5
1903	10 +0	18.5	15	18.5	1945	178		186 - 5	183	190.5
	—∙25	G 44 955			1946	182	+0	190 · 5 194 · 5	191	194.5
1904	14)	22.5	19	22.5	1947	186	$^{+0}_{-1.75}$	198.5	195	198.5
1905	18	26.5	23	26.5	1948	190		202.5	199	202 - 5
1906	22 +0	30 5	27	30 - 5	1949	194 198		206.5	203	208 - 5
1907		34.5	31	34.5	1950			210.5	207	210.5
1908	30 3	38.5	35	38.5	1951	202 206		214.5	211	214.5
1909	34	42.5	39	42.5	1952	210		218.5	215	218 5
1910	38	46.5	43	46 · 5	1953 1954	210		222.5	219	222 - 5
1911	42)	50.5	47	54.5	1954	214		226 5	223	226 - 5
1912	46	54.5	51	58·5	1956	222		230.5	227	230 - 5
1913	50 +0.	58.5	55 59	62.5	1957	226		234 5	231	234 - 5
1914	54 - 75	62·5 66·5	63	66.5	1957	230		238 5	235	238 - 5
1915 1916	62	70.5	67	70.5	1959	234		242 5	239	242 -
1917	66	74.5	71	74.5	1960	238		246.5	213	246 -
1918	70	78.5	75	78.5	1961	242		250 - 5	247	250 (
1918	74	82.5	79	82.5	1962	246		254 5	251	254 -
1920		86.5	83	86.5	1963	250		258 5	255	258 -
1921	78 (+0 82 (-1·0	90-5	87	90.5	1964	254	200	262.5	259	262 -
1922	86 3	94.5	91	94.5	1966	258		266 5	263	266 -
1923	90	98.5	95	98 5	1966	262	5.00	270 - 5	267	270
1924	945	102-5	99	102 5	1967	266		274 - 5	271	274
1925	98	106.5	103	106.5	1968	270		278 - 5	275	278 -
1926	102	110.5	107	110.5	1969	274	L+0	282.5	279	282
1927	100	114.5	îii	114.5	1970	278	_2·0	286 - 5	283	286 -
1928	110 170	118.5	115	118.5	1971	282		290 5	287	290 -
1929	114 (-1.25	122.5	119	122.5	1972	286		294.5	291	294
1930	118	126-5	123	126.5	1973	290	K-Mark	298 5	295	298
1931	122	130 - 5	127	130 -5	1974	294	HE SERVE	302 - 5	299	302
1932	126	134.5	131	134.5	1975	298	100000	306 - 5	303	306
1933	1301	138-5	135	138.5	1976	302		310 5	307	310
1934	134	142 - 5	139	142.5	1977	306		314.5	311	314
1935	138	146.5	143	146 5	1978	310		318-5	315	318
1936	142	150 - 5	147	150 5	1979	314	15.44%	322 - 5	319	322
1937	146 +0	154 5	151	154 5	1980	318		326.5	323	326 ·
1938	150	158 5		158 - 5	1981	322	Part of	330 · 5	327	330
1939	154	162 : 5		162.5	1982	326	124257	334 · 5	331	334 ·
1940	158	166 - 5		166.5	1983	330	17.50	338 · 5	335	338
1941	162	170 - 5		170.5	1984	334		342 5	339	342
1942	166) +0	174 5		174.5	1985	338		346.5	343	346
1943	1 1/0 / 1 75	178 5		178.5	1986	342		350 . 5	347	350 ·
1944	174] 174	182 - 5	179	182.5	1987	346 350	SEE SE	354 · 5 358 · 5	351 355	354 · 358 ·

Abstracted by permission of the Brilish Engineering Standards Association from B.S. Specification 5 W. 8, official copies of which can be obtained from the Secretary of the Association, 28, Victoria Street, Westimister, S.W.1, price 8d., post free.

5 W. 8. January, 1928.

SWAGED TIE RODS-contd.

(Cancelling B.S. Specification 4 W. 8.)

Size: $\frac{13}{2}$ inch.

Ultimate Tensilo Strength: 10,250 lb.

Thread: $\frac{13}{2}$ inch, B.S.F. $D=2\cdot55$ inches. $H=0\cdot38$ inch.

Width across flats of Square $=0\cdot33\pm0\cdot002$ inch.

Diam. of Swaged Part $=0\cdot303\stackrel{-}{-}0$ inch. Area of Swaged Part $=0\cdot0721$ sq. inch.

2003 2004 2005 2006 2007			of Blank	2.4741.5.4.1			rerall between Part No.		Length	1771	reen
2004 2005 2006 2007	10 -	hes		Min.	Max.	N. C.S.	(With Limits)	of Blank	Min.	Max.	
2004 2005 2006 2007			Inches	Inches	Inches	S. S. S. S.	Inches	Inches	Inches	Inches	
2005 2006 2007		+0	18.5	15	18.5	2045	178)	186 - 5	183	186 - 5	
2005 2006 2007		 ∙25	LO BOAR	250	712 (1974)	2046	182 +0	190.5	187	190 - 5	
2006 2007	14)		22.5	19	22.5	2047		194.5	191	194.5	
2007	18		26.5	23	26.5	2048	100	198.5	195	198.5	
	22	+0	30.5	27	30 - 5	2049	194	202 - 5	199	202 - 5	
	20.	_·5	34.5	31	34.5	2050	198	206.5	203	206.5	
2008	30		38.5	35	38.5	2051	202	210.5	207	210.5	
2009	34		42.5	39	42.5	2052	206	214.5	211	214 · 5	
2010	38		46.5	43	46.5	2053	210	218.5	215	218.5	
2011	42 \	25 X Y V	50.5	47	50 5	2054	214	222 - 5	219	222 - 5	
2012	46		54 · 5	51	54.5	2055	218	226 - 5	223	226 · 5	
2013	50	 0	58.5	55	58.5	2056	222	230 . 5	227	230 5	
2014		75	62 - 5	59	62 - 5	2057	226	234 - 5	231	234 . 5	
2015	58		66 - 5	63	66.5	2058	230	238 - 5	235	238.5	
2016	62		70 - 5	67	70-5	2059	234	242 - 5	239	242 · 5	
2017	66]		74 5	71	74 · 5	2060	238	246-5	243	246.5	
2018	70)		78-5	75	78.5	2061	242	250 . 5	247	250 · 5	
2019	74	35.14	82 5	79	82.5	2062	246	254.5	251	254.5	
2020	78 [-	+0	86 - 5	83	86.5	2063	250	258 - 5	255	258 · 5	
2021		-1.0	90 · 5	87	90.5	2064	254	262 5	259	262 · 5	
2022	86		94.5	91	94 5	2065	258	266.5	263	266.5	
2023	90]		98 - 5	95	98 5	2066	262	270.5	267	270.5	
2024	94)		102 5	99	102 - 5	2067	266	274.5	271	274.5	
2025	98		106-5	103	106.5	2068	270 +0	278 5	275	278.5	
2026	102		110 5	107	110.5	2069	4/4 7 0 0	282 5	279	282.5	
2027	106	+0	114 5	111	114.5	2070	278	286.5	283	286 · 5	
2028	110 6	-1 25	118 5	115	118.5	2071	282	290 - 5	287	290 . 5	
2029	114		122.5	119	122 - 5	2072	286	294.5	291	294.5	
	118		126-5	123	126 5	2073	290	298 5	295	298.5	
2031	122		130 - 5	127	130 · 5	2074	294	302 - 5	299	302.5	
2032	126		134 5	131	134 5	2075	298	306 5	303	306.5	
2033	130		138 - 5	135	138.5	2076	302	310 - 5	307	310.5	
2034	134		142.5	139	142 5	2077	306	314 .5	311	314.5	
	138		146.5	143	146 5	2078	310	318 5	315	318.5	
2036	142	+0	150 - 5	147	150 5	2079	314	322 - 5	319	322.5	
	TIO	-1.5	154.5	151	154 5	2080	318	326 5	323	326 - 5	
2038	150		158 - 5	155	158 5	2081	322	330 - 5	327	330 - 5	
2039	154		162 - 5	159	162.5	2082	326	334 5	331	334.5	
2040	158		166 - 5	163	166.5	2083	330	338 5	335	338.5	
2041	162		170 5	167	170 5	2084	334	342.5	339	342.5	
2042	166	+0	174.5	171	174.5	2085	338	346 5	343	346 5	
2043	110 7	-1.75	178.5	175	178 5	2086	342	350 . 5	347	350 . 5	
2044	174 J		182 - 5	179	182.5	2087 2088	346 350	354 · 5 358 · 5	351 355	354 · 5 358 · 5	

Abstracted by permission of the British Engineering Standards Association from B.S. Specification 5 W. 8, official copies of which can be obtained from the Secretary of the Association, 28, Victoria Street, Westminster, S.W. 1, price 8th, post free.

SWAGED TIE RODS-contd.

[5 W. 8. January, 1928.

(Cancelling B.S. Specification 4 W. 8.

Size: $\frac{1}{4}$ inch.

Ultimate Tensile Strength: 11,800 lb.

Thread: $\frac{1}{4}$ inch, B.S.F. D=2.65 inches. H=0.38 inch.

Width across flats of Square $=0.36\pm0.002$ inch.

Diam. of Swaged Part $=0.326\pm0.012$ inch. Area of Swaged Part =0.0835 sq. inch.

Part No.	В	Overall Length	For "A' betw	Lengths reen	Part No.	В	Overall Length	For "A' betw	
	(With Limits)	of Blank	Min.	Max.	- 19 X	(With Limits)	of Blank	Min.	Max.
S. S.	Inches	Inches	Inches	Inches	- 17 - 12 - 1	Inches	Inches	Inches	Inches
2103	10 +0	19	15.5	19	2145	178	187	183 - 5	187
75 991	·25				2146	182 +0	191	187.5	191
2104	14)	23	19.5	23	2147	100 > 1 mm	195	191 5	195
2105	18	27	23.5	27	2148	190	199	195 5	199
2106	22 +0	31	27.5	31	2149	194	203	199.5	203
2107		35	31.5	35	2150	198)	207	203.5	207
2108	30	39	35.5	39	2151	202	211	207 - 5	211
2109	34	43	39.5	43	2152	206	215	211 5	215
2110	38.	47	43 5	47	2153	210	219	215.5 219.5	219
2111	42	51	47.5	51	2154	214	223		223
2112	46	55	51 5	55	2155	218	227 231	223·5 227·5	227 231
2113	50 +0 .	59	55 5	59	2156	222			
2114	UT / HE	63	59.5	63	2157	226	235 239	231·5 235·5	235
2115	58 78	67	63.5	67	2158	230		239.5	239
2116	62	71	67.5	71	2159	234	243 247	243.5	243 247
2117	66	75	71.5	75	2160	238	251	247.5	251
2118	70)	79	75.5	79	2161	242	255	251.5	255
2119	74	83	79.5	83	2162	246	259 259	255.5	259
2120	78 \ +0	87	83 5	87	2163	250	263	259.5	263
2121	82 -1 0	91	87.5	91	2164	254	267	263.5	267
2122	86	95	91.5	95	2165	258	271	267.5	271
2123	90	99	95 5	99	2166	262 266	275	271.5	275
2124	94	103	99.5	103	2167		279	275.5	279
2125	102	107 111	103 · 5 107 · 5	107 111	2168	270 +0	283	279.5	283
2126 2127	102	111	111.5	1115	2169 2170	278 -2.0	287	283.5	287
2128	110 +0	119	115.5		2171	282	291	287.5	291
2128	114 -1.25	123	119.5	119 123	2171	286	295	291 5	295
2130	118	123	123.5	123	2172	290	299	295.5	299
2131	122	131	127.5	131	2174	294	303	299.5	303
2132	126	135	131.5	135	2175	298	307	303.5	307
2132	130	139	135.5	139	2176	302	311	307.5	311
2134	134	143	139 5	143		302	315	311.5	315
					2177	310	319	315.5	319
2135 2136	138 142	147 151	143·5 147·5	147 151	2178 2179	314	323	319.5	323
2136	340 1 +0	155	151.5	155	2179	318	327	323.5	327
2137	150 -1 5	159	155.5	159	2180	322	331	327.5	331
2139	154	163	159.5	163	2182	326	335	331.5	335
2140	158	167	163.5	167	2182	330	339	335 5	339
2141	162	171	167.5	171	2184	334	343	339 5	343
2141	1005	175	171.5	175	2185	338	347	343 - 5	347
2142	170 +0	179	175.5	179	2186	342	351	347.5	351
2143	174 -1.75	183	179.5	183	2180	346	355	351.5	355
ም ተለቱ	1 447	103	1,2.0	100	2188	350	359	355.5	359

Abstracted by permission of the British Engineering Standards Association from B.S. Specification 5 W. 8, official copies of which can be obtained from the Secretary of the Association, 28, Victoria Street, Westminster, S.W.1, price 8d., post free.

[5 W. 8. January, 1928.

SWAGED TIE RODS-contd.

(Cancelling B.S. Specification 4 W. 8.)

ng B.S. Specification 4 W. 8.) $\begin{aligned} & \text{Size}: \ \tfrac{16}{2} \ \text{inch.} \\ & \text{Ultimate Tensile Strength}: \ 13,800 \ \text{lb.} \\ & \text{Thread}: \ \tfrac{16}{2} \ \text{inch, B.S.F.} \quad D = 2 \cdot 85 \ \text{inches.} \quad H = 0 \cdot 45 \ \text{inch.} \\ & \text{Width across flats of Square} = 0 \cdot 39 \pm 0 \cdot 002 \ \text{inch.} \\ & \text{Diam. of Swaged Part} = 0 \cdot 355 \stackrel{0}{-} 0 \\ & + 0 \cdot 013 \ \text{inch.} \quad \text{Area of Swaged Part} = \cdot 0989 \ \text{sq. inch.} \end{aligned}$

Part No.	В	Overall Length	For "A' betw		Part No.	В		Overall Length	For "A" betw	
	(With Limits)	of Blank	Min.	Max.		(With Lin	nits)	of Blank	Min.	Max.
485.5	Inches	Inches	Inches	Inches	SAN	Inche	98	Inches	Inches	Inches
2203	10 +0	19.5	16	19.5	2245	178)		187 - 5	184	187.5
V 3/1/X	—·25	THE STATE OF	TOWERS.	100.214	2246	182 +0		191 - 5	188	191 5
2204	14)	23.5	20	23.5	2247	100 7 1	.75	195 - 5	192	195.5
2205	18	27.5	24	27.5	2248	190		199.5	196	199.5
2206	22	31.5	28	31.5	2249	194		203 - 5	200	203 - 5
2207	26 +0	35 - 5	32	35.5	2250	198		207 .5	204	207 - 5
2208	30 - 5	39.5	36	39.5	2251	202		211 -5	208	211.5
2209	34	43.5	40	43.5	2252	206		215.5	212	215.5
2210	38	47.5	44	47.5	2253	210		219 5	216	219 5
2211	42)	51.5	48	51.5	2254	214		223 - 5	220	223 . 5
2212	46	55 . 5	52	55 - 5	2255	218		227 . 5	224	227 - 5
2213	50 +0	59.5	56	59.5	2256	222		231 - 5	228	231 .5
2214	OX / 75	63 - 5	60	63 - 5	2257	226	3.74	235 . 5	232	235 - 5
2215	08	67 - 5	64	67.5	2258	230		239 5	236	. 239 - 5
2216	62	71.5	68	71.5	2259	234		243 5	240	243 - 5
2217	66	75 - 5	72	75 - 5	2260	238		247 . 5	244	247 - 5
2218	70)	79.5	76	79.5	2261	242		251 -5	248	251 5
2219	74	83 - 5	80	83 - 5	2262	246	723	255 . 5	252	255 - 5
2220	78 +0	87.5	84	87.5	2263	250		259 - 5	256	259 - 5
2221	82 (-1.0	91 . 5	88	91.5	2264	254		263 · 5	260	263 - 5
2222	86	95.5	92	95 - 5	2265	258		267 - 5	264	267 - 5
2223	90	99.5	96	99.5	2266	262		271 -5	268	271 -
2224	94)	103 . 5	100	103-5	2267	266		275 - 5	272	275
2225	98	107.5	4 104	107.5	2268	270 +	O	279.5	276	279 €
2226	102	111.5	108	111 5	2269	AIT C	2.0	283 - 5	280	283 -
2227	106 +0	115-5	112	115.5	2270	278	100	287 - 5	284	287 -
2228	1 110 7 1 05	119.5	116	119.5	2271	282		291 5	288	291 -
2229	1 114 Section 2	123 - 5	120	123 5	2272	286		295 - 5	292	295 -
2230	118	127 - 5	124	127.5	2273	290		299 - 5	296	299
2231	122	131.5	128	131-5	2274	294		303 - 5	300	303
2232	126	135 5	132	135 - 5	2275	298		307 . 5	304	307 -
2233	130 \	139.5	136	139.5	2276	302		311 - 5	308	311 -
2234	134	143 · 5	140	143.5	2277	306		315 - 5	312	315
2235	138	147.5	144	147 - 5	2278	310		319.5	316	319
2236	142 +0	151 - 5	148	151 - 5	2279	314		323 - 5	320	323 ·
2237	140 > 1 =	155 - 5	152	155.5	2280	318		327 - 5	324	327
2238	190	159.5	156	159 - 5	2281	322		331 .5	328	331 -
2239	154	163 - 5	160	163 - 5	2282	326		335 - 5	332	335
2240	158	167 5	164	167 · 5	2283	330		339 - 5	336	339
2241	162	171 5	168	171.5	2284	334		343 - 5	340	343
2242	166 +0	175 5	172	175 - 5	2285	338		347 .5	344	347
2243	110 > 2 00	179 5	176	179 . 5	2286	342	and a large	351 - 5	348	351 ·
2244	174] -1 - 18	183 - 5	180	183 - 5	2287	346		355 - 5	352	355
0.000		113884		4 (23.36)	2288	350		359 - 5	356	359

Abstracted by permission of the British Engineering Standards Association from B.S. Specification 5 W. 8, official copies of which can be obtained from the Secretary of the Association, 28, Victoria Street, Westmunter, S.W.1, price 8d., post free.

SWAGED TIE RODS—contd.

5 W. 8. January, 1928.

(Cancelling B.S. Specification 4 W. 8.)

Size: $\frac{1}{2}$ inch.

Ultimate Tensile Strength: 15,500 lb.

Thread: $\frac{1}{2}$ inch, B.S.F. D = 2·95 inches. H = 0·45 inch.

Width across flats of Square = 0·41 \pm 0·002 inch.

Diam. of Swaged Part = 0·377 $\frac{-0}{+0.014}$ inch. Area of Swaged Part = 0·1116 sq. inch.

Part No.	В	Overall Length	For "A' bety	' Lengths veen	Part No.		В	Overall Length	For "A'	' Length veen
	(With Limits)	of Blank	Min.	Max.		(Wit	h Limits)	of Blank	Min.	Max.
2303	Inches 10 +0	Inches 19.5	Inches 16	Inches 19·5	2345	178	nches	Inches 187 · 5	Inches 184	Inches 187 · 5
2304	25			11/28/58	2346	182	+0	191.5	188	191 . 5
2304	14	23.5	20	23.5	2347	186	—1·75	195.5	192	195 5
2306	00	27·5 31·5	24 28	27.5	2348	190	local file	199.5	196	199 · 5
2307	26 +0	35.5	32	31.5	2349	194		203 - 5	200	203 - 5
2308	305	39.5	36	35.5	2350	198	\$75,000 ASS	207.5	204	207 5
2309	34	43.5	40	39·5 43·5	2351	202		211.5	208	211.5
2310	38	47.5	44	47.5	2352	206	Maria Salay	215.5	212	215.5
2311	421	51.5	48	51.5	2353	210		219.5	216	219.5
2312	46	55.5	52	55.5	2354 2355	214 218		223.5	220	223 5
2313	60	59.5	56	59.5	2356	218		227.5	224	227 - 5
2314	54 (+0	63.5	60	63.5	2357	222		231 .5	228	231 - 5
2315	58 (75	67.5	64	67.5	2358	230		235 - 5	232	235 · 5
2316	62	71.5	68	71.5	2359	234		239 · 5 243 · 5	236	239 - 5
2317	66	75.5	72	75.5	2360	238			240	243.5
2318	701	79.5	76	79.5	2361	242		247.5	244	247.5
2319	74	83 - 5	80	83 5	2362	246		251 · 5 255 · 5	248 252	251.5
2320	78 +0	87.5	84	87.5	2363	250		259.5	252 256	255 - 5
2321	82 (-1.0	91.5	88	91.5	2364	254		263 - 5	260	259 . 5
2322	86	95 - 5	92	95.5	2365	258		267.5	264	263 - 5
2323	90	99 - 5	96	99.5	2366	262		271.5	268	267 · 5 271 · 5
2324	941	103 - 5	100	103.5	2367	266		275.5	272	275.5
2325	98	107.5	104	107:5	2368	270		279.5	276	279.5
2326	102	111.5	108	111.5	2369	274	(+0 .	283 5	280	283 - 5
2327	106 +0	115 5	112	115.5	2370	278	-2.0	287 5	284	287 5
2328	110 > 1 00	119.5	116	119.5	2371	282	Mary Mary	291 -5	288	291 5
2329	114 -1.25	123 - 5	120	123.5	2372	286		295 5	292	295 5
2330	118	127.5	124	127.5	2373	290		299.5	296	299.5
2331	122	131 - 5	128	131 - 5	2374	294		303 - 5	300	303 - 5
2332	126 J	135 . 5	132	135 - 5	2375	298		307.5	304	307.5
2333	130 ๅ	139.5	136	139.5	2376	302		311 5	308	311.5
2334	134	143.5	140	143.5	2377	306		315.5	312	315.5
2335	138	147 - 5	144	147.5	2378	310		319.5	316	319.5
2336	$\frac{142}{146} \left(+0 \right)$	151 - 5	148	151 - 5	2379	314		323 - 5	320	323 5
2337		155 5	152	155 5	2380	318		327 - 5	324	327 - 5
2338	190	159 - 5	156	159 5	2381	322		331 - 5	328	331 5
2339	154	163 - 5	160	163 - 5	2382	326	以来的图像	335 - 5	332	335.5
2340	158	167.5	164	167.5	2383	330		339.5	336	339 - 5
2341	162	171 - 5	168	171 -5	2384	334		343.5	340	343.5
2342	166 1+0	175 5	172	175 - 5	2385	338	HENRY SE	347.5	344	347 - 5
2343	110 Z 1 me	179.5	176	179.5	2386	342		351 - 5	348	351 - 5
2344	174	183 · 5	180	183 - 5	2387	346		355 - 5	352	355 - 5
\$2.50 M		A STATE OF THE PARTY OF THE PAR	1000000	MARKED.	2388	350	Est Control	359 - 5	356	359 - 5

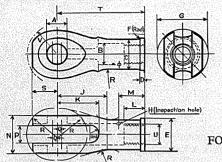
Abstracted by permission of the British Engineering Standards Association from B.S. Specification 5 W. 8, official copies of which can be obtained from the Secretary of the Association, 23, Victoria Street, Westminster, S.W.1, price 8d., post free.

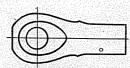
FORK JOINTS (Table 1)

LOW TENSILE TYPE

2 S.P.3

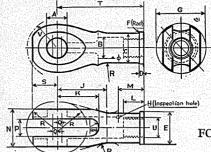
Design and Dimensions.—All Fork Joints (those in S.1. steel after coating) shall be in accordance with the dimensions and limits given in Table I, with the exception that those made in stainless steel shall have the collar D omitted. They may be tapped either right-hand or left-hand as may be necessary, and when ordering the hand shall be definitely specified.

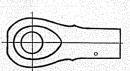

MATERIAL.—All Fork Joints shall be made from steel bars which have been inspected and passed by the Inspector as complying with the latest issue of B.S. Specification S.1. or B.S. Specification S.62 or S.80 where stainless steel is specified.


Manufacture.—(a) The Fork Joints shall be machined bright all over. (b) The screw threads of coated Fork Joints in S.1. steel and those of Fork Joints in stainless steel shall not be smaller than the maximum full, effective and core diameters specified for the bolts in Table II of B.S. Specification No. 93 for British Association Threads, or Table II of B.S. Specification No. 84 for British Standard Fine Threads. The screw threads of all Fork Joints (those in S.1. steel after being coated) shall be required to pass approved gauges.

Anti-Corrosion Coating.—The finished Fork Joints in S.1. Steel shall be uniformly coated with zinc or cadmium by an approved process. The thickness of the coating shall be not less than 0.0003 inch. If the coating is electro-deposited the forks shall be heated to a suitable temperature between 100° C. and 200° C. for at least 30 minutes after coating.

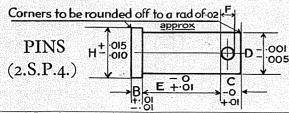
Marking.—Each Fork Joint shall have the appropriate Part Number applied on the shank near the tapped end by rolling and shall also bear the identification mark of the Inspector. Each Fork Joint made in stainless steel shall in addition be marked with two "SS" adjacent to the Part Number.


Sketch showing fork Joint with collar D amitter as a manufacturing mark for fork Joints made in stainless steel.


FORK JOINTS (Table 1)—continued

1	Warring.	2	3	4	5	6	7	8	9	10	11	12	13	14	##5j#6
Part (See Fo		Size of	A	В	С	D	E	F	G	н	J	K	L	M	Part No. of Stan-
R.H. Thread	L.H. Thread	Fork Joint	+·001 +·005	—0 +÷01	-0 + ·01	—0 + ∙015	0 + ·015			機器	0 + ∙04	—0 +-∙015	-0 + ∙04	—0 + ∙04	dard Pin See Spec 2 S.P. 4
			in.	in.	in.	in.	in.	in.	in. in.	in.	in.	in.	in.	in.	
412	412L	4 B.A.	35	12	-23	-07	-28	-05	—0 ∙36+∙015	7g.	-40	-35	-20	-30	338/2
413	413L	2 ,,	ांडे	å	·28	-08	.32	-05	—0 ·48+·015	18	-50	-40	-25	∙35	383/19
411	411L	7 B.S.F.	3/2	报	∙34	-10	-40	-05	—0 ·56+·015	삵	.53	-48	-25	-35	383/37
414	414L	1 .,	ì	H	-385	-11	-48	-05	010 -62+-005	뱌	-60	-50	-30	-40	383/54
415	415I.	3 <u>1</u> "	25	报	-44	-12	-50	-05	0 ·72+·015	18	•78	-60	-30	-40	383/72
416	416L	i	łł.	31	· 4 9	-12	-56	-05	0 -86+-015	18	∙78	-70	-35	-45	383/10
417	417L	<u>₩</u> "	11	#1	-54	•15	-62	-05	0 -90+-015	ık ık	.78	.70	·35	.45	383/10
418	418L	3 "	H	ži	-58	·15	-66	-05			-90	-80	· 4 0	.50	383/14
419	419L	<u></u> ,	18	87	-63	-15	-71	-05	··010 1·06+·005		1.05	.95	-45	-55	383/150
420	420L	7 16 "	15	88	-68	-15	-76	-05	—0 1 · 14+ · 015	16	1.1	1.0	•45	-55	383/17
421	421L	14 ,,	ł	81	·73	·15	-81	.05	-0 1 · 20 + · 015	18	1 -25	1.1	-50	-60	383/19
422	422L	ł "	12	32	.77	.15	-85	.05	020 1·26+0		1 · 3	1 - 17	-55	-65	383/20

NOTE.—Where Fork Joints are required to be in stainless steel (S.62 or S.80) the Part Numbers in the blue print schedules must bear the Suffix Letters S.S. e.g. 412 S.S., 413 L.S.S.


Sketch showing fork Joint with collar D omitted as a manufacturing mark for fork Joints made in stainless steel.

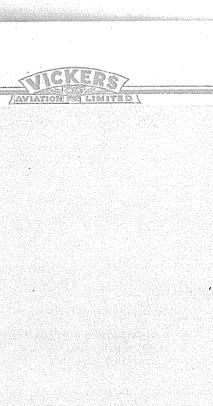
FORK JOINTS (Table 1)—continued

90.55			15	16	17	18	19	20	21	22	23	24	25
Part (See Fo	otnote)	Size of	N	Р	Q	R	s	Т	U	V Pin	Minimum Ultimate	Approx.	Part No of Stan- dard Pin
R.H. Thread	L.H. Thread	Fork Joint	-0 + .015	_0 + ·01	+-01 +-01		_0 + ∙01	-0 + .04	R.H.orL.H. Thread	Drill Rod	Tensile Strength	Weight	See Spec 2 S.P. 4
			in.	in.	in.	in.	in.	in.		in.	lb.	lb.	
412	412L	4 B.A.	-26	-10	∙04	-18	-19	1.1	4 B.A.	·23	1155	-010	383/2
413	413L	. 2 "	:33	-15	-06	-24	.24	1 · 3	2 "	-31	2090	-016	383/19
411	411L	- 2 B.S.F.	·42	·20	-05	.28	-27	1.5	₹ B.S.F.	·34	2860	-030	383/37
414	414L	ł "	·48	-20	-08	.31	-30	1.5	ł "	-39	3795	-046	383/54
415	415L	3g .,	-58	·20	-08	-36	-34	1.7	32 ",	45	5115	-076	383/72
416	416L	£	-68	·25	-05	-43	-37	1 -85	it "	-50	6270	-104	383/10
417	417L	11 "	.73	·25	-09	-45	-39	1.90	łł "	-55	7865	∙135	383/10
418	418L	1 .,	-78	-30	-12	-50	-44	2.1	ł "	-62	9350	·168	383/14
419	419L	₩.,,	•78	-34	-13	-53	-54	2 · 35	13 "	-67	11275	-208	383/15
420	420L	₹ "	-83	-36	-18	.57	-58	2 · 45	1 6 "	.74	12980	-250	383/17
421	421L	15 »,	-93	-38	-13	-60	•62	2.6	15 "	.74	15180	-293	383/19
422	422L	ł "	-98	-40	-18	-63	64	2.7	1 .,	-81	17050	.334	383/20

NOTE.—Where Fork Joints are required to be in stainless steel (S.02 or S.30) the Part Numbers in the blue print schedules must bear the Suffix Letters S.S. e.g. 412 S.S., 413 L.S.S.

Dia. of Pin D	н	В	C	F Stan- dard Drill								Leng	ths l	C (in	ches)						
ins.	ins.	ins.	188	Size ins.		25	30	.35	-40	•45	-50	-55	-60	-65	-70	-75	-80	-85	.90	-95	1.00
15±	ł	05	-12	070	131	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
16	16	-06	12	070		17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32
372	16 16	.07	-12	070		33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48
ł	1	-08	-12	070		49	50	51	52	53	54	- 55	56	57	58	59	60	61	62	63	64
32	1	-09	-18	-104		65	.66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
16	76	·10	18	104		81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96
111	76	·11	18	104		97	98	99	100	101	102	103	104	105	106	107	108	109	110	111	112
ł	1/2	12	·18	104		113	114	115	116	117	118	119	120	121	122	123	124	125	126	127	128
12	1	13	25	·136	383	129	130	131	132	133	134	135	136	137	138	139	140	141	142	143	144
176	10 9	-14	25	-136	No. 38	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159	160
15	16	-15	-25	-136	Part N	161	162	163	164	165	166	167	168	169	170	171	172	173	174	175	176
ł	5	-16	-25	-136	Pa	177	178	179	180	181	182	183	184	185	186	187	188	189	190	191	192
17	5	17	-25	-136		193	194	195	196	197	198	199	200	201	202	203	204	205	206	207	208
16	11	17	-31	-166					1437	\$ 8°	214	215	216	217	218	219	220	221	222	223	224
12	23 32	.17	-31	166				Ayr.		V	10 P			77.E			225	226	227	228	229
\$	1	-17	·31	-166				25			230	231	232	233	234	235	236	237	238	239	240
$\tfrac{21}{32}$	13	.17	31	·166		35		8.5			246	247	248	249	250	251	252	253	254	255	256
밥	7	17	31	166							262	263	264	265	266	267	268	269	270	271	272
1	15	17	-31	166						t de la composition della comp	3.3										
18	1 0	.17	-37	-199			533											776			
3	l <u>1</u> 6	17	37	-199	1941. 1741.		XI.	- 115 116	4.5			¥								25	
播	11	17	37	-199	3.5			30 C (1) 1 - 1 - 1		7,57	(1) E	No.			7.5	57	100		23,123 38,131	52534 V 100	
1 •0	1 %	-17	.37	199	1000 1000 1000							See								3700	120 CT A 170 A
1 ₁₆	11	-17	43	·261	(1.7	100	<i>1</i> .79				100		HA.		1123.7	Y 1/2			3,44		

PINS (2.S.P.4.)—continued


Dia. of Pin D	н	В	C	F Stan- dard Drill								L	ngth	9 E	(inche	s)						
ins.	ins.	ins.	ins.	Size ins.		1 - 10	1 · 20	1 - 30	1 40	1 · 50	1 -60	1 · 70	1 · 80	1 90	2 00	2 · 20	2 · 40	2 - 60	2 80	3 -00	3 · 20	3 · 4
32	ł	-05	-12	-070					22.V				AM.	265		77						
il.	10	-06	-12	-070		1	2	3	4	- 5	6	7	8	9	10		100					
32 32	16	-07	·12	-070		21	22	23	24	25	26	27	28	29	30		ŅŠ.	1000				
ł	3 8	-08	12	-070	30	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	9.3%	
9 32	ì	-09	·18	·104	78.0 (No.	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85		
16 16	70	-10	·18	104	360	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115		10
11.	7 10	11	-18	104		131	132	133	134	135	136	137	138	139	140	141	142	143	144	145		
3 8	ł	·12	·18	-104,	3.8	161	162	163	164	165	166	167	168	169	170	171	172	173	174	175	176	177
12	1 2	13	.25	·136		191	192	193	194	195	196	197	198	199	200	201	202	203	204	205	206	207
70	å	-14	-25	·136	#	221	222	223	224	225	226	227	228	229	230	231	232	233	234	235	236	237
15 32	18	15	-25	-136	0:38	251	252	253	254	255	256	257	258	259	260	261	262	263	264	265	266	267
1	8	16	-25	·136	Part Nor 384	281	282	283	284	285	286	287	288	289	290	291	292	293	294	295	296	297
12	\$	17	25	-136	Pa	311	312	313	314	315	316	317	318	319	320	321	322	323	324	325	326	327
ů	报	17	·31	-166		341	342	343	344	345	346	347	348	349	350	351	352	253	354	355	356	357
18	33	17	·31	-166	7	358	359	360	361	362	363	364	365	366	367	368	369	370			145	
5	1	17	-31	-166		371	372	373	374	375	376	377	378	379	380	381	382	383	384	385	386	387
21 32	13	-17	·31	166		388	389	390	391	392	393	394	395	396	397	398	399	400				
뱌	ł	-17	-3]	-166		401	402	403	404	405	406	407	408	409	410	411	412	413	414	415	416	417
1	18	-17	31	-166	17/05	431	432	433	434	435	436	437	438	439	440	441	442	443	444	445	446	44
18	1-6	17	.37	-199		461	462	463	464	465	466	467	468	469	470	471	472	473	474	475	476	47
7	1 18	17	37	-199		491	492	493	494	495	496	497	498	499	500	501	502	503	504	505	506	50
报	11	17	.37	·199		521	522	523	524	525	526	527	528	529	530	531	532	533	534	535	536	537
1-0	1 3	-17	37	-199		551	552	553	554	555	556	557	558	559	560	561	562	563	564	565	566	567
լ դ	11	-17	43	261	N.	345	W.	SAR	584	585	586	587	588	589	590	591	592	593	594	595	596	591

PINS (2.S.P.4.)—continued

Norm.—Pins to the Part Numbers in the table below are used on the Standard Plain Forks for Streamline Wires and Tie Rods.

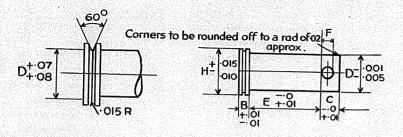
A.G.S. 1 Size o Fork	1 (4)	3/2 383 BA 2 1	/19 383/3 3A 35 in B.S.	ı. } in.		383/106 5 in. B.S.F.	383/107 11 in. B.S.F.	383/140 1 in. B.S.F.	383/156 13 in. B.S.F.	383/17:
A.G.S. No.	383/191	383/208	383/221	383/228	384/371	384/401	384/433	384/464	384/526	384/588
Size of Fork	⅓ in. B.S.F.	l in. B.S.F.	å in. B.S.F.	in. B.S.F.	∰ in. B.S.F.	in. B.S.F.	₹ in. B.S.F.	l in. B.S.F.	11 in. B.S.F.	1½ in. B.S.F.

PINS (Non-Corrosive Steel)

(See Diagram on page 126.)

Dia of Pia D	n.	()	В	С	F Stan- dard Drill								Len	gths	E (i	nches	,					
ins	in:	s. in	18.	ins.	Size ins.	100	25	30	-35	-40	45	-50	-55	-60	65	-70	75	-80	-85	90	95	1.0
32	ł	(05	12	070		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	10
18	ń	(6	·12	070		17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32
372	rle	()7	12	-070		33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48
ł	38	-0	8	-12	:070		49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64
32	3	.0	9	18	·104		65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
16	iè	1	0	·18	104	戀	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96
11	10	1	1	18	·104		97	98	99	100	101	102	103	104	105	106	107	108	109	110	111	112
ŧ	1	-1	2	18	·104		113	114	115	116	117	118	119	120	121	122	123	124	125	126	127	128
13	1	.1	3	25	-136	3	129	130	131	132	133	134	135	136	137	138	139	140	141	142	143	144
7e	16	1	4	25	136	3. 783	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159	160
15	18	-1	5	25	·136	V.G.S.	161	162	163	164	165	166	167	168	169	170	171	172	173	174	175	176
1/2	ŧ	1	6	25	·136		177	178	179	180	181	182	183	184	185	186	187	188	189	190	191	192
17	8	1	7	25	-136		193	194	195	196	197	198	199	200	201	202	203	204	205	206	207	208
% %	报	1'	7	31	·166						X	214	215	216	217	218	219	220	221	222	223	224
32	32	.1'	7	31	·166				7,67									225	226	227	228	229
B	1	1'	7	31	166				69 S 63 S	態		230	231	232	233	234	235	236	237	238	239	240
31	18	17	7	31	:166		#X.					246	247	248	249	250	251	252	253	254	255	256
11	7	.17		31	166		8007 1000 1000					262	263	264	265	266	267	268	269	270	271	272
1	ቔ	.17		31	166																	
18	1 0	17		37	199																	
7	1 1	17		37	199						-, " " "				777							
18	11	-17		37	199											100						
.0	1 %	-17	.:	37	199									111								
ı,	11	-17	1.4	13	261								-7-5									-

PINS (Non-Corrosive Steel)—continued


Dia. of Pin D	н	В	С	F Stan- dard Drill								Le	ngths	E (inche	s)						
ns.	ins.	ins.	ins.	Size ins.		1 · 10	1 20	1 · 30	1 -40	1 -50	1 · 60	1 · 70	1 ·80	1 · 90	2 00	2 · 20	2 · 40	2 · 60	2 · 80	3 · 00	3 · 20	3 · 40
32	ł	-05	·12	-070	Ų,	37.5			47.			(1) (1)		15				11/				
18	า้ธ	-06	-12	.070		1	2	3	4	5	6	7	8	9	10				1984			
7 32	16	-07	-12	-070		21	22	23	24	25	26	27	28	29	30		J.	49.4% 1757		36	M.	ĸŞ
1	1	.08	·12	-070		41	42	43	44	45	46	47	48	49	50	51	52	53	54	8 5		
92	3	.09	-18	·104		71	72	73	74	75	76	77	78	79	80	81	82	83	84	85		
5 16	7 16	·10	-18	·104		101	102	103	104	105	106	107	108	109	110	111	112	113	114	115		¥2.
11	76	·11	-18	104		131	132	133	134	135	136	137	138	139	140	141	142	143	144	145	200	
1	1	12	·18	-104		161	162	163	164	165	166	167	168	169	170	171	172	173	174	175	176	17
13	1	13	.25	·136		191	192	193	194	195	196	197	198	199	200	201	202	203	204	205	206	20
78	30	14	25	·136	784	221	222	223	224	225	226	227	228	229	230	231	232	233	234	235	236	23
15	20	.15	-25	-136	G.S.	251	252	253	254	255	256	257	258	259	260	261	262	263	264	265	266	26'
ļ	1	.16	.25	-136	۸	281	282	283	284	285	286	287	288	289	290	291	292	293	294	295	296	29
17	5	17	-25	-136		311	312	313	314	315	316	317	318	319	320	321	322	323	324	325	326	32
ne ne	11	.17	31	166	3.71	341	342	343	344	345	346	347	348	349	350	351	352	353	354	355	356	35
13	33	17	-31	166	1000	358	359	360	361	362	363	364	365	366	367	368	369	370		Pierre Control		
§	1	-17	V. J. S. S.	-166		371	372	373	374	375	376	377	378	379	380	381	382	383	384	385	386	38
21 31	13	17	1000	12 (A.A.y.	1000 1000 1000	388	389	390	391	392	393	394	395	396	397	398	399	400				
11	1.0	-17	1100	-166		401	402	403	404	405	406	407	408	409	410	411	412	413	414	415	416	41
1	18	-17	1757	61620	777	431	432	433	434	435	436	437	438	439	440	441	442	443	444	445	446	44
18	1.0	-	3 100	2 3 7 2 2 2		461	462	463	464	465	466	467	468	469	470	471	472	473	474	475	476	47
7	14	-	20.00	Drawert I		491	System.	493	10000	of tracting	- Soleno	497	498	499	500	501	502	503	504	505	506	50
- 8 - 15 - 31	11	-	-	0.2000	-	521	2000	523	-	-	-	527	528	529	530	531	532	533	534	535	536	53
10	-	1/4/0	-	W. (800)	100	551	1,000	553	1	-	1000	11000	212-12	197526	12,010	561	562	563	564	565	566	56
14	-	-	-	40,600.00		815		17.07	584	10000	1899.2	100000	588	2000	Y-010	591	592	593	594	595	596	59

PINS (Non-Corrosive Steel)—continued

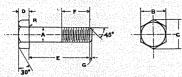
Note.—Pins to the Part Numbers in the table below are used on the Standard Plain Forks for Streamline Wires and Tie Rods.

V.G.S. N Size of Fork		83/2 BA	2 B	379	in. S.F.	783/54 } in. B.S.F.	& in.	783/106 f in. B.S.F.	783/107 11 in. B.S.F.	783/140	783/156 13 in. B.S.F.	783/173 7 in. B.S.F.
V.G.S. No.	783/191	783,	/208	783/22	1 7	83/228	784/371	784/401	784/433	784/464	784/526	784/588
Size of Fork	∰ in. B.S.F.	1 i B.S	in. .F.	å in. B.S.F		∯ in. B.S.F.	# in. B.S.F.	in. B.S.F.	in. B.S.F.	l in. B.S.F.	11 in. B.S.F.	1½ in. B.S.F.

USEFUL TABLES

The following pages are inserted in the belief that they will be of value to members of the technical staffs of aircraft manufacturers.

Bolts		128 to 1	PAGE 32, 137, 138
Nuts			
Colour Scheme for Metals, Standard			
Gauges, Equivalents (English and Metric)			145
Mensuration of Surfaces and Solids	••	••	145
Metric Conversion Tables (See Index on page 161)			162 to 184
Tube Constants			146 to 149
Weights of Aluminium Sheets			152, 153
Weights of Castings			150
Weights of Duralumin Extruded Rectangular Secti	ons		156, 157
Weights of Duralumin Hexagon Rod			155
Weights of Duralumin Round Rod and Bars		•	154
Weights of Duralumin Sheets			160
Weights of Duralumin Square Rod	•••		155
Weights of Duralumin Tubes			158, 159
Weights of Duralumin Wire			154
Weights of Plates (Mild Steel and Duralumin)			151



4 A 1. June, 1931.

(Cancelling B.S. Specification 3 A 1.)

TABLE I.

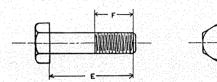
BRITISH ASSOCIATION AND BRITISH STANDARD FINE BOLTS.

For Length of Shank (E) and Length of Screwing (F), see Table II.

1	2	3	4	5	6	7	8	9	10	11	12	13
		7		1	Bolt.						Split :	Pin.
Diameter of Bolt	Tolerance on Diameter	Fl	across ats 3.	Width across Cor- ners C.	Thiel I		Radius under Bolt Head	C	pth f mfor }.	Dia. of Pin.	Over- all Lgth. of	Size of Drill for Pin
	of Shank.	Min.	Max.	Ap- prox. Max.	Min.	Max.	R.	Min.	Max.		Pin.	Hole.
	in. + —	in.	in.	in.	in.	in.	in,	in.	in.	in.	in.	in.
6 B.A. (2 8 mm.) 4 B.A. (3 6 ,,) 2 B.A. (4 7 ,,)		0·190 0·245 0·321	0·193 0·248 0·324	0·22 0·29 0·37	0·078 0·100 0·132		0.02	0·015 0·020 0·030	0.020 0.030 0.040	- -	 1	_ _ 0:070
inch 72 B.S.F. (0·2188) 14 ,, (0·25) 15 ,, (0·2813)	0 .0035	0·410 0·440 0·520	0:413 0:445 0:525	0·48 0·51 0·61	0·15 0·18 0·21	0·16 0·19 0·22	0·03 0·03 0·03	0 · 030 0 · 030 0 · 030	0 · 040 0 · 040 0 · 040	16 19 19	1 1 1	0 · 070 0 · 070 0 · 070
6 ,, (0·3125) 3 ,, (0·375) 3 ,, (0·4375)	0 .0035	0·520 0·595 0·705	0 · 525 0 · 600 0 · 710	0.61 0.69 0.82	0·21 0·26 0·32	0·22 0·27 0·33	0·03 0·03 0·03	0·030 0·030 0·040	0·040 0·040 0·050	ाहे इंडे अंडे	1 1 11	0.070 0.070 0.104
1 ,, (0·5) 8 ,, (0·5625) 4 ,, (0·625)	0 ·0040 0 ·0040 0 ·0060	0·815 0·915 1·002	0 · 820 0 · 920 1 · 010	0 · 95 1 · 06 1 · 17	0·37 0·43 0·48	0·38 0·44 0·49	0·03 0·03 0·03	0·040 0·040 0·050	0 · 050 0 · 050 0 · 060	181 181 18	11/4 11/4 11/2	0·104 0·136 0·136
₩ " (0·6875) ₩ " (0·75) ₩ " (0·8125)	0 -0060	1·092 1·192 1·192	1·100 1·200 1·200	1 · 27 1 · 39 1 · 39	0·54 0·59 0·62	0 · 55 0 · 60 0 · 63	0·03 0·03 0·03	0 · 050 0 · 065 0 · 065	0·060 0·075 0·075	10 c/11 c/11	12 12 13	0·136 0·166 0·166
7 ,, (0·875) 4 ,, (0·9375) 1 ,, (1·0)	0 ·0080 0 ·0080 0 ·0080	1 · 292 1 · 382 1 · 468	1 · 300 1 · 390 1 · 480	1 · 50 1 · 61 1 · 71	0·65 0·70 0·76	0·66 0·71 0·77	0·03 0·03 0·03	0·065 0·065 0·065	0·075 0·075 0·075	32 32 32 16	2 2 21	0·166 0·166 0·199

Specification: Material to be steel to the latest issue of B.S. Specification S.1 or S.61 as may be specified.

Abstracted by permission of the British Engineering Standards Association from B.S. Specification 4.A.1., Official copies of which can be obtained from the Secretary of the Association, 28, Victoria Street, Westminster S.W.1 mice 80. vert fee.



[4 A 1 . June, 1931.

(Cancelling B.S. Specification 3 A. 1.)

TABLE II.

LENGTH OF SHANK AND LENGTH OF SCREWING FOR BRIGHT STEEL BOLTS.

For Dimensions of Heads, see Table I.

	6 B.A.			4 B.A.			2 B.A.			
Part No.	E + 04 in. —0	F + ·04 in. —0	Part No.	E + 04 in. -0	F + ·04 in. —0	Part No.	E + 04 in. —0	F + ·04 in. —0		
Tanana.	in.	in.	200	in.	in.	100 m	in.	in.		
A 4	0.4	0.35	B 4	0.4	0.35	C 4	0.4	0.35		
A 6	0.6	0.45	B 6	0.6	0.45	C 6	0.6	0.50		
A §8	0.8	0.45	В 8	0.8	0.45	C 8	0.8	0.50		
A 10	1.0	0.45	B 10	1.0	0.45	C 10	1.0	0.50		
A 14	1.4	0.65	B 14	1.4	0.65	C 14	1.4	0.70		
A 18	1.8	0.65	B 18	1.8	0.65	C 18	1.8	0.70		
A 22	2.2	0.65	B 22	2.2	0.65	C 22	2.2	0.70		
A 26	2.6	0.65	B 26	2.6	0.65	C 26	2.6	0.70		
A 30	3.0	0.65	B 30	3.0	0.65	C 30	3.0	0.70		
A 35	3.5	0.70	B 35	3.5	0.70	C 35	3 5	0.80		
A 40	4.0	0.70	B 40	4.0	0.70	C 40	4 0	0.80		
A 45	4.5	0.70	B 45	4:5	0.70	C 45	4.5	0.80		
A 50	5.0	0.70	B 50	5.0	0.70	C 50	5.0	0.80		
A 55	5.5	1.00	B 55	5.5	1.00	C 55	5.5	1.00		
A 60	6.0	1.00	B 60	6.0	1.00	C 60	6.0	1.00		

Specification: Material to be steel to the latest issue of B.S. Specification S.1 or S.61 as may be specified.

Abstracted by permission of the British Engineering Standards
Association from B.S. Specification 4 A. 1., official copies of which can
be obtained from the Secretary of the Association, 28, Victoria Street,
Westminster, S.W.1, price 8d., post free.

[4 A]. June, 1931.

(Cancelling P.S. Specification 3 A 1.)

TABLE II .- continued.

LENGTH OF SHANK AND LENGTH OF SCREWING FOR BRIGHT STEEL BOLTS.

For Dimensions of Heads, see Table I.

	7 in. B.S.F			1 in. B.S.F.			💤 in. B.S.F	
Part No.	E + 04 in. —0	+ ·04 in. -0	Part No.	E + 04 in. —0	F + ·04 in. -0	Part No.	E + ·04 in. —0	F + ·04 in —0
D 4 D 6 D 8	in. 0·4 0·6 0·8	in. 0·35 0·55 0·55	E 4 E 6 E 8	in. 0·4 0·6 0·8	in. 0·35 0·55 0·55	F 4 F 6 F 8	in. 0·4 0·6 0·8	in. 0·35 0·60 0·60
D 10	1:0	0·55	E 10	1:0	0 · 55	F 10	1.0	0.60
D 14	1:4	0·75	E 14	1:4	0 · 75	F 14	1.4	0.80
D 18	1:8	0·75	E 18	1:8	0 · 75	F 18	1.8	0.80
D 22	2 · 2	0 · 75	E 22	2·2	0·75	F 22	2 · 2	0 · 80
D 26	2 · 6	0 · 75	E 26	2·6	0·75	F 26	2 · 6	0 · 80
D 30	3 · 0	0 · 75	E 30	3·0	0·75	F 30	3 · 0	0 · 80
D 35 D 40 D 45	3·5 4·0 4·5	0.80 0.80 0.80	E 35 E 40 E 45	3·5 4·0 4·5	0.80 0.80 0.80	F 35 F 40 F 45	3·5 4·0 4·5	0 - 90 0 - 90
D 50	5·0	0 · 80	E 50	5·0	0·80	F 50	5.0	0 · 90
D 55	5·5	1 · 00	E 55	5·5	1·00	F 55	5;5	1 · 00
D 60	6·0	1 · 00	E 60	6·0	1·00	F 60	6.0	1 · 00
	5 in. B.S.F			in. B.S.F.			7 in. B.S.F	
Part No.	+ :04 in. -0	F +·04 in. —0	Part No.	E + 04 in. -0	F + ·08 in. —0	Part No.	E +·04 in. —0	F + ·08 in —0
G 4 G 6 G 8	in. 0·4 0·6 0·8	in. 0 · 35 0 · 60 0 · 60	J 6 J 8	in. 0.6 0.8	in. 0·55 0·65	L 8	in. 0-8	in. 0 · 70
G 10	1 · 0	0 · 60	J 10	1.0	0·65	L 10	1 · 0	0.70
G 14	1 · 4	0 · 80	J 14	1.4	0·85	L 14	1 · 4	0.90
G 18	1 · 8	0 · 80	J 18	1.8	0·85	L 18	1 · 8	0.90
G 22	2·2	0·80	J 22	2·2	0·85	L 22	2·2	0.90
G 26	2·6	0·80	J 26	2·6	0·85	L 26	2·6	0.90
G 30	3·0	0·80	J 30	3·0	0·85	L 30	3·0	0.90
G 35	3·5	0.90	J 35	3·5	0·95	L 35	3·5	1 · 05
G 40	4·0	0.90	J 40	4·0	0·95	L 40	4·0	1 · 05
G 45	4·5	0.90	J 45	4·5	0·95	L 45	4·5	1 · 05
G 50	5·0	0.90	J 50	5·0	0.95	L 50	5·0	1.05
G 55	5·5	1.00	J 55	5·5	1.00	L 55	5·5	1.05
G 60	6·0	1.00	J 60	6·0	1.00	L 60	6·0	1.05

Specification: Material to be steel to the latest issue of B.S. Specification S.1 or S.61 as may be specified.

Abstracted by permission of the British Engineering Standards Association from B.S. Specification 4.1. 1., official copies of which can be obtained from the Secretary of the Association, 28, Victoria Street, Westminster, S.W.1, price 8d., post from

4 1 June, 1931.

(Cancelling B.S. Specification 3 A. 1.)

TABLE II .- continued.

	l in. B.S.F.			% in. B.S.F.			§ in. B.S.F.	
Part No.	E + 04 in. —0	F + 08 in. -0	Part No.	E + 04 in. —0	+ ·08 in. -0	Part No.	E + 04 in. -0	F +0·1 in -0
	in.	in.		in.	in.	7-75-	in.	in.
N 8	0.8	0.75					100	
N 10	1.0	0.75	P 10	1.0	0.90	Q 10	1.0	0.90
N 14	1.4	1.00	P 14	1.4	1.00	Q 14	1.4	1.00
N 18	1.8	1.00	P 18	1.8	1 -00	Q 18	1.8	1.00
N 22	2.2	1.00	P 22	2 2	1.00	Q 22	2.2	1.00
N 26	2.6	1.00	P 26	2.6	1.00	Q 26	2.6	1.00
N 30	3 ⋅0	1.00	P 30	3.0	1.00	Q 30	3.0	1.00
N 35	3.5	1.10	P 35	3.5	1 · 10	Q 35	3.5	1.10
N 40	4.0	1.10	P 40	4.0	1.10	Q 40	4.0	1 10
N 45	4.5	1.10	P 45	4.5	1 - 10	Q 45	4.5	1.10
N 50	5.0	1 -10	P 50	5.0	1.10	Q 50	5.0	1.10
N 55	5.5	1.10	P 55	5.5	1.10	Q 55	5.5	1.10
N 60	6.0	1.10	P 60	6.0	1.10	Q 60	6.0	1 10

	₩ in. B.S.F			∄ in. B.S.F.			li in. B.S.F	
* Part No.	E ,+·04 in. —0	F +0·1 in. —0	Part No.	E + 04 in. —0	F +0·1 in. —0	Part No.	E + ·04 in. —0	F +0·1 in -0
	in.	in.	3000	in.	in.	1151745	in.	in.
R 10	1.0	0.90	S 10	1.0	0.90	T 10	1.0	0.90
R 14	1.4	1.00	S 14	1.4	1 10	T 14	1.4	1 10
R 18	1.8	1.00	S 18	1.8	1 · 10	T 18	1.8	1.10
R 22	2.2	1.00	S 22	2 · 2	1.10	T 22	2.2	1.10
R 26	2.6	1.00	S 26	2.6	1.10	T 26	2.6	1 10
R 30	3.0	1.00	S 30	3.0	1 · 10	T 30	3.0	1 · 10
R 35	3.5	1 · 10	S 35	3.5	1.20	T 35	3.5	1.20
R 40	4.0	1.10	S 40	4.0	1.20	T 40	4.0	1.20
R 45	4.5	1 · 10	S 45	4.5	1.20	T 45	4:5	1.20
R 50	5.0	1.10	S 50	5.0	1.20	T 50	5.0	1.20
R 55	5.5	1.10	S 55	5.5	1.20	T 55	5.5	1.20
R 60	6.0	1.10	S 60	6-0	1.20	T 60	6.0	1.20

Specification: Material to be steel to the latest issue of B.S. Specification S.1 or S.61 as may be specified.

Abstracted by permission of the British Engineering Standards Association from B.S. Specification 4 A. 1., official copies of which can be obtained from the Secretary of the Association, 28, Victoria Street, Westminster, S.W.1, price 8d., post free.

[4 A 1. June, 1931.]
Cancelling B.S. Specification 3 A. 1.)

TABLE II .- continued.

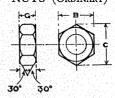
	₹ in. B.S.F.			∦ in. B.S.F				
Part No.	E + ·06 in. —0	F +0·1 in. —0	Part No.	E + ·06 in. —0	F +0·1 in. -0	Part No.	E + 06 in. —0	F +0·1 in. —0
A 4 10 40	in.	in.		in.	in.	75 JAN 9-1	in.	in.
U14	1.4	1.20	V 14	1.4	1.20	W 14	1.4	1.20
U 18	1.8	1 30	V 18	1.8	1.30	W 18	1.8	1.30
U 22	2.2	1 30	V 22	2.2	1.30	W 22	2.2	1.30
U 26	2.6	1.30	V 26	2.6	1.30	W 26	2.6	1.30
U 30	3.0	1 · 30	V 30	3.0	1.30	W 30	3.0	1 · 30
U 35	3.5	1 40	V 35	3.5	1.40	W 35	3.5	I 40
U 40	4.0	1.40	V 40	4.0	1.40	W 40	4.0	1.40
U 45	4.5	1.40	V 45	4.5	1.40	W 45	4.5	1 40
U 50	5.0	1.40	V 50	5.0	1.40	W 50	5.0	1 40
U 55	5.5	1.40	V 55	5.5	1.40	W 55	5 5	1.40
U 60	6.0	1.40	V 60	6.0	1.40	W 60	6.0	1.40

Specification: Material to be steel to the latest issue of B.S. Specification S.1 or S.61 as may be specified.

Note.

When intermediate lengths of bolts are required the length of the serewed portion (F) shall be equal to that of the next longer Standard size bolt in Table II. Such intermediate lengths of bolts should be ordered under the same system of Part Numbering, e.g. C 325 denotes a 2 B.A. bolt having an E length of 3.25 inches and an F length of 0.80 inch.

Abstracted by permission of the British Engineering Standards Association from B.S. Specification 4 A. 1., afficial copies of which can be obtained from the Secretary of the Association, 28, Victoria Street, Westminster, S.W.1, price 8d., post free.


4 A 1

June, 1931.

(Cancelling B.S. Specification 3 A, 1.)

TABLE III.

NUTS (ORDINARY)

1	5		3	4	5	6	, 7	
Nominal Size.	Par	. No.	Width ac	ross Flats	Width across Corners C.	Thickness G.		
	Rt. Hd. Thd.	Lt. Hd. Thd.	Min.	Max.	Approx. Max.	Min.	Max.	
6 B.A. 4 B.A. 2 B.A.	AP BP CP	APL BPL CPL	in. 0 · 190 0 · 245 0 · 321	in. 0 193 0 248 0 324	in. 0 · 22 0 · 29 0 · 37	in. 0·100 0·132 0·175	in. 0·110 0·142 0·185	
72 in. B.S.F.	DP EP FP	DPL EPL FPL	0·410 0·440 0·520	0:413 0:445 0:525	0·48 0·51 0·61	0·161 0·190 0·215	0·171 0·200 0·225	
la 1 1	GP JP LP	GPL JPL LPL	0 · 520 0 · 595 0 · 705	0 · 525 0 · 600 0 · 710	0·61 0·69 0·82	0·240 0·302 0·365	0,250 0,312 0,375	
1 , , , , , , , , , , , , , , , , , , ,	NP PP QP	NPL PPL QPL	0·815 0·915 1·002	0 · 820 0 · 920 1 · 010	0·95 1·06 1·17	0·427 0·490 0·552	0 · 437 0 · 500 0 · 562	
11 ". 11 ".	RP SP TP	RPL SPL TPL	1 · 092 1 · 192 1 · 192	1 · 100 1 · 200 1 · 200	1·27 1·39 1·39	0·615 0·677 0·708	0 · 625 0 · 687 0 · 718	
7 16 1	UP VP WP	UPL VPL WPL	1 · 292 1 · 382 1 · 468	1 · 300 1 · 390 1 · 480	1·50 1·61 1·71	0·740 0·802 0·865	0 · 750 0 · 812 0 · 875	

Specification: Material to be steel to the latest issue of B.S. Specification S.1 or S.61 as may be specified.

Abstracted by permission of the British Engineering Standards Association from B.S. Specification 4 A. 1., official copies of which can be oblained from the Secretary of the Association, 28, Victoria Street, Westminster, S.W.1, price 80., post free.

[4 A 1. June, 1931.

(Cancelling B.S. Specification 3 A. 1.)

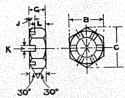
TABLE IV.
LOCK NUTS.

1	1	2	3	4	5	6	7.	
Nominal Size.	Part	No.	Width ac		Width across Corners C.	Thicl F	ickness H.	
	Rt. Hd. Thd.	Lt. Hd. Thd.	Min.	Max.	Approx. Max.	Min.	Max.	
		12.37	in.	in.	în.	in.	in.	
6 B.A.	AT	ATL	0.190	0.193	0.22	0.063	0.073	
4 B.A.	BT	BTL	0.245	0.248	0.29	0.085	0.098	
2 B.A.	CT	CTL	0.321	0.324	0.37	0.113	0 123	
32 in. B.S.F.	DT	DTL	0.410	0.413	0.48	0.104	0 114	
1	ET	ETL	0.440	0.445	0.51	0.123	0 133	
i "	FT	FTL	0.520	0.525	0.61	0.140	0.150	
is "	GT	GTL	0.520	0.525	0.61	0.156	0.160	
₩ "	HT	HTL	0.560	0.565	0.65	0.176	0.186	
1	JT	JTL	0.595	0.600	0.69	0.198	0 · 208	
11 " 16 " 18 "	KT	KTL	0.650	0.655	0.76	0.220	0.230	
· 16 ",	LT	LTL	0.705	0.710	0.82	0.240	0.250	
₩ "	MT	MTL	0.760	0.765	0.88	0.260	0.270	
1 "	NT	NTL	0.815	0.820	0.95	0.281	0 - 291	
ii ,,	PT	PTL	0.915	0.920	1.06	0.323	0.333	
1	QT	QTL	1.002	1.010	1:17	0.365	0.376	
18 " 2 " 18 "	RT	RTL	1.092	1.100	1 .27	0.406	0.416	
ł "	ST	STL	1 192	1.200	1.39	0.448	0 .458	
₩ "	TT	TTL	1.192	1 · 200	1.39	0.470	0 · 480	
積 間 "	UT	UTL	1.292	1.300	1.50	0.490	0.500	
₩,,,	VT	VTL	1 · 382	1.390	1.61	0.530	0.540	
i "	WT	WTL	1.468	1.480	1.71	0.573	0.583	
11 " 11 ",	xT	XTL	1.658	1.670	1.93	0.656	0.66	
1 ,	YT	YTL	1.845	1.860	2.15	0.730	0.75	

Specification: Material to be steel to the latest issue of B.S. Specification S.1 or S.61 as may be specified.

Abstracted by permission of the British Engineering Standards

Association from B.S. Specification 4 A. 1., official copies of which can
be obtained from the Secretary of the Association, 28, Victoria Street,


Westminster, S.W.1, price 8d., postfree.

[4 A 1. June, 1931.

(Cancelling B.S. Specification 3 A. 1).

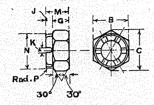
TABLE V. SLOTTED NUTS.

For Width across Flats and Corners (dimensions B & C) see Table III.

1		2	3	4	5	6	7	8
	Part	No.	Thickness G.		SI	ot	Face of Nut to Bottom of Slot L.	
Nominal Size.	Rt. Hd. Thd.	Lt. Hd. Thd.	Min.	Max.	J.	к.	Min.	Max.
2 B.A.	CS		in, 0·240	in. 0 ·250	in. 0.090	in. 0.080	in. 0 · 150	in. 0·160
7 in. B.S.F.	DS ES FS		0 · 240 0 · 250 0 · 260	0 · 250 0 · 260 0 · 270	0.090 0.090 0.090	0.090 0.090 0.090	0·150 0·160 0·170	0·160 0·170 0·180
is " i " is "	GS JS LS		0·270 0·302 0·365	0 · 280 0 · 312 0 · 375	0.090 0.090 0.140	0.090 0.090 0.125	$0.180 \\ 0.212 \\ 0.225$	0 · 190 0 · 222 0 · 230
1 " 16 " 1 "	NS PS QS		0 · 427 0 · 490 0 · 552	0 · 437 0 · 500 0 · 562	0·140 0·187 0·187	0·125 0·165 0·165	0 · 287 0 · 303 0 · 365	0 · 297 0 · 313 0 · 376
## " # "	RS SS TS		0 · 615 0 · 677 0 · 708	0:625 0:687 0:718	0·187 0·234 0·234	0·165 0·208 0·208	0·428 0·443 0·474	0 · 438 0 · 453 0 · 484
7 " 15 " 1 "	US VS WS		0.740 0.802 0.865	0 · 750 0 · 812 0 · 875	0 · 234 0 · 240 0 · 280	0 · 208 0 · 208 0 · 250	0.506 0.562 0.585	0.516 0.572 0.593

Specification: Material to be steel to the latest issue of B.S. Specification S.1 or S.61 as may be specified.

Abstracted by permission of the British Engineering Standards Association from B.S. Specification 4 A. I., official copies of which can be obtained from the Secretary of the Association, 28, Victoria Street, Westminster, S.W.I., price 8d., post free.



[4 A 1. June, 1931.

(Cancelling B.S. Specification 3 A. 1.)

TABLE VI.

CASTLE NUTS.

For Width across Flats and Corners (dimensions B & C) see Table III.

Note.—The slots may be made rectangular as in the key plan to Table V, or rounded as in the key plan Table VI at the option of the manufacturer.

1	2	3	4	5	6	7	8	9	10	11
Nominal Size.	Part No.	Total Thickness M.		Thickness of Hexagon G.		Diameter N.		Radius of Edge.	Slot	
		Min.	Max.	Min.	Max.	Min.	Max.	P	J	К
		in.	in.	in.	in.	in.	in.	in.	in.	in.
⅓ in. B.S.F.	DC	0.251	0.261	0.161	0.171	0.395	0.400	0.04	0.090	0.090
.	EC	0.280	0.290	0.190	0.200	0.425	0.430	0.04	0.090	0.090
32 "	FC	0.305	0.315	0.215	0.225	0.500	0.510	0.05	0.090	0.090
å "	GC	0.330	0.340	0.240	0.250	0.500	0.510	0.05	0.090	0.090
1	JC	0.392	0.402	0.302	0.312	0.575	0 585	0.05	0.090	0.090
18 "	LC	0.505	0.515	0.365	0.375	0.685	0.695	0.06	0.140	0.125
1 ,	NC	0.567	0.577	0.427	0.437	0.795	0.805	0.06	0.140	0 125
å "	PC	0.677	0.687	0.490	0.500	0 895	0.905	0.06	0.187	0 165
§ ,,	QC	0.739	0.749	0.552	0.562	0.985	0.995	0.07	0.187	0.160
# "	RC	0.802	0.812	0.615	0.625	1.065	1 085	0.07	0.187	0.160
?	SC	0.911	0.921	0.677	0.687	1 165	1.185	0.08	0.234	0.208
₩ "	TC	0.942	0.952	0.708	0.718	1 - 165	1.185	0.08	0 234	0.208
ł "	UC	0.974	0.984	0.740	0.750	1 - 265	1.285	0.08	0 234	0 208
Ĥ "	VC	1.042	1.052	0.802	0.812	1 355	1.375	0.08	0.240	0.208
ï .	WC	1.145	1 155	0.865	0.875	1.445	1 465	0.09	0.280	0.250

Specification: Material to be steel to the latest issue of B.S. Specification S.1 or S.61 as may be specified.

Abstracted by permission of the British Engineering Standards Association from B.S. Specification 4 A. 1., official copies of which can be obtained from the Secretary of the Association, 28, Victoria Street, Westminuter, S.W.1, price 8th, post free.

[4 A 1.

June, 1931.

(Cancelling B.S. Specification 3 A. 1.)

APPENDIX

Tables showing the Relation between the Part Numbers in B.S. Specification 2 A 1 and those for the corresponding sizes in B.S. Specification 4 A 1.

TABLE 1.

BOLTS.

4 B	Α.	2 B	.A.	l in. P	B.S.F.	5 in. I	3.S.F.	in. B	S.F.
Part	No.	Part	No.	Part	No.	Part	No.	Part	No.
2 A 1	4 A 1	2 A 1	4 A 1	2 A 1	4 A 1	2 A 1	4 A 1	2 A I	4 A 1
102 B 102 C 102 D	B 4 B 6 B 8	103 B 103 C 103 D	C 4 C 6 C 8	105 B 105 C 105 D	E 4 E 6 E 8	107 B 107 C 107 D	G 4 G 6 G 8	109 C 109 D	J 6 J 8
102 E 102 G 102 I	B 10 B 14 B 18	103 E 103 G 103 I	C 10 C 14 C 18	105 E 105 G 105 I	E 10 E 14 E 18	107 E 107 G 107 I	G 10 G 14 G 18	109 E, 109 G 109 I	J 10 J 14 J 18
102 K 102 M 102 O	B 22 B 26 B 30	103 K 103 M 103 O	C 22 C 26 C 30	105 K 105 M 105 O	E 22 E 26 E 30	107 K 107 M 107 O	G 22 G 26 G 30	109 K 109 M 109 O	J 22 J 26 J 30
102 Q 102 S 102 U	B 35 B 40 B 45	103 Q 103 S 103 U	C 35 C 40 C 45	105 Q 105 S 105 U	E 35 E 40 E 45	107 Q 107 S 107 U	G 35 G 40 G 45	109 Q 109 S 109 U	J 35 J 40 J 45
102 W 102 X 102 Y	B 50 B 55 B 60	103 W 103 X 103 Y	C 50 C 55 C 60	105 W 105 X 105 Y	E 50 E 55 E 60	107 W 107 X 107 Y	G 50 G 55 G 60	109 W 109 X 109 Y	J 50 J 55 J 60
¼ in.	B.S.F.	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	B.S.F.		B.S.F.	å in. I	3.S.F.	}} in.]	B.S.F.
Part	No.	Part	No.	Part	No.	Part	No.	Part	No.
2 A 1	4 A 1	2 A 1	4 A 1	2 A 1	4 A 1	2 A 1	4 A I	2 A 1	4 A 1
111 D	L 8	112 D	N 8						-
111 E 111 G 111 I	L 10 L 14 L 18	112 E 112 G 112 I	N 10 N 14 N 18	1001 E 1001 G 1001 I	P 10 P 14 P 18	1002 E 1002 G 1002 I	Q 10 Q 14 Q 18	1003 E 1003 G 1003 I	R 10 R 14 R 18
111 K 111 M 111 O	L 22 L 26 L 30	112 K 112 M 112 O	N 22 N 26 N 30	1001 K 1001 M 1001 O	P 22 P 26 P 30	1002 K 1002 M 1002 O	Q 22 Q 26 Q 30	1003 K 1003 M 1003 O	R 22 R 26 R 30
111 Q 111 S	L 35 L 40 L 45	112 Q 112 S 112 U	N 35 N 40 N 45	1001 Q 1001 S 1001 U	P 35 P 40 P 45	1002 Q 1002 S 1002 U	Q 35 Q 40 Q 45	1003 Q 1003 S 1003 U	R 30 R 40 R 40
îîî ŭ	4.40.0040-0046		10.000 (1975) 53 (1976)	1001 W	P 50	1002 W	Q 50	1003 W	R 50

Abstracted by permission of the British Engineering Standards Association from B.S. Specification 4 A. 1., official copies of which can be obtained from the Secretary of the Association, 28, Victoria Street, Westminster, S.W.1, price 8d., post free.

[4 A 1. June, 1931. (Cancelling B.S. Specification 3 A. 1.)

APPENDIX-continued

TABLE I.

Tables showing the Relation between the Part Numbers in B.S. Specification 2 A 1 and those for the corresponding sizes in B.S. Specification 4 A 1.

BOLTS.

₹ in. I	3.S.F.	∦å in.	🙀 in. B.S.F.		7 in. B.S.F.		B.S.F.	1 in. 1	3.S.F.
Part	No.	Part	No.	Part	Part No. Part No.		Part No.		
2 A 1	4 A 1	2 A 1	4 A 1	2 A 1	4 A 1	2 A 1	4 A 1	2 A 1	4 A 1
1004 E 1004 G 1004 I	S 10 S 14 S 18	1005 E 1005 G 1005 I	T 10 T 14 T 18	1006 G 1006 I	U 14 U 18	1007 G 1007 I	V 14 V 18	1008 G 1008 I	W 14 W 18
1004 K 1004 M 1004 O	S 22 S 26 S 30	1005 K 1005 M 1005 O	T 22 T 26 T 30	1006 K 1006 M 1006 O	U 22 U 26 U 30	1007 K 1007 M 1007 O	V 22 V 26 V 30	1008 K 1008 M 1008 O	W 22 W 26 W 30
1004 Q 1004 S 1004 U	8 35 8 40 8 45	1005 Q 1005 S 1005 U	T 35 T 40 T 45	1006 Q 1006 S 1006 U	U 35 U 40 U 45	1007 Q 1007 S 1007 U	V 35 V 40 V 45	1008 Q 1008 S 1008 U	W 35 W 40 W 45
1004 W 1004 X 1004 Y	S 50 S 55 S 60	1005 W 1005 X 1005 Y	T 50 T 55 T 60	1006 W 1006 X 1006 Y	U 50 U 55 U 60	1007 W 1007 X 1007 Y	V 50 V 55 V 60	1008 W 1008 X 1008 Y	W 50 W 55 W 60

June. 1931

(Cancelling B.S. Specification 3 A. 1.)

TABLE III.

TABLE II.

NUT

TS	(Ordinary).	*-	I	OC1	K NUTS.
	Part No.		Size.		Part N

	Part	No.
Size	2 A 1	4 A 1
4 B.A.	115 C	BP
2 B.A.	115 B	CP
in. B.S.F.	116 A	EP
it »	116 C	GP
1 ,	116 E	JP
is "	116 G	LP
.	116 H	NP
18 "	116 J	PP
1 " 18 "	116 K	QP
₩ "	116 L	RP
	116 M	SP
il "	116 N	TP
ł "	116 P	UP
∯ "	116 Q	VP
î "	116 R	WP

Size.	Part No.		
Size.	2 A 1	4 A 1	
4 B.A. 2 B.A. 1 in. B.S.F.	115 C 115 B 117 A	BT CT ET	
16 " 8 " 10 "	117 C 117 E 117 G	GT JT LT	
1 " " " " " " " " " " " " " " " " " " "	117 H 117 J 117 K	, NT PT QT	
# " # " # "	117 L 117 M 117 N	RT ST TT	
16 " 10 "	117 P 117 Q 117 R	UT VT WT	

TABLE IV.

SLOTTED NUTS.

_	Part No.		
Size.	2 A 1	4 A 1	
2 B.A.	114 B	CS	
1 in. B.S.F.	118 A	ES	
i ,,	118 C	GS	
1	118 E	JS	
1	118 G	LS	
;	118 H	NS	
<u>a</u>	118 J	PS	
₽ "	118 K	QS	
l "	118 L	ŘŠ	
ł "	118 M	SS	
ł "	118 N	TS	
10 ",	118 P	US	
₩ "	118 Q	vs	
77 "	118 R	ws	

TABLE V.

CASTLE NUTS.

Gr	Part	No.
Size.	2 A 1	4 A 1
1 in. B.S.F. 15 " 1 " 1 " 1 " 1 "	119 A 119 C 119 E 119 G 119 H	EC GC JC LC NC

Abstracted by permission of the British Engineering Standards Association from B.S. Specification 4 A.1., official copies of which can be obtained from the Secretary of the Association, 28, Victoria Street, Westminster, S.W.1, price 8d., post free.

This Specification was approved by the Aircraft Industry Committee on 20th May, 1931, and published by the authority of the Council of the Association as a British Standard on 15th June, 1931.

STANDARD COLOUR SCHEME FOR METALS

COLOURS

The colours used are Red, Yellow, Black, Blue, Green, Brown and White.

APPLICATION.

BARS AND TUBES.—Each bar and tube is to be painted at each end with the colour or colours indicated, in the following manner:

For one colour.—1 Band 12 ins. wide. For two colours.—2 Bands each 6 ins. wide. For three colours.—3 Bands each 4 ins. wide.

SHEETS AND STRIP.—Each sheet and strip shall be painted with a band or bands of the required colours running diagonally across the corner bearing the identification stamp marks. The width of the band or bands is to be in accordance with paragraph 2 (a) and the painting is to commence six inches from the corner, measured at right angles to the length of the band. Strips or sheets less than one foot wide shall be painted at one end in a similar manner to bars and tubes.

Alternatively, sheets and strips may be painted with discs three inches in diameter for single colours, additional colours when required being applied in concentric annular rings one and a half inches wide.

BRASS, BRONZE AND COPPER.

Number and Type.	Colour.
B. 1.—High Tensile Brass Bar	Red.
B. 4.—Copper Sheets, Annealed	Black.
B. 5.—Brass Sheets, Hard	Blue.
B. 6.—Naval Brass Bars	Blue.
B. 8.—Phosphor Bronze, Cast Bars	Yellow.
B.11.—Brass Bars for Brazing	Brown.
B.12.—Brass Sheets, Annealed	Green.
B.13.—Brass Bars	Black.
B.15.—Copper Sheets, Half-hard	Yellow.
B.16.—Brass Sheets, Half-hard	Red.
Copper Bars, B.E.S.A. Publication No. 24—1925,	recu.
Part V. (Spec. 12.A.)	Vellow block

ALUMINIUM AND ALUMINIUM ALLOYS

TITOMITATOM	AND ALUMINIUM ALLOYS.
Number and T	'ype. Colour
L. I.—Duralumin Bars. Heat-tre	eated Vollow
L. 3.—Duralumin Sheets. Heat-t	reated Yellow.
L. 4.—Aluminium Sheets, Hard	Croon
L.16.—Aluminium Sheets, Half-ha	rd Blue.
L.17.—Aluminium Sheets, Soft	· · Black.

STANDARD COLOUR SCHEME FOR METALS—continued

ALUMINIUM AND ALUMINIUM ALLOYS-continued.

Number and Type.	Colour.
20명 가능 - 그렇게 하는 것 같아. 그는 사람이 작업하는 사람들은 사람들이 함께 하는 것 같아. 그는 사람들이 없는 사람들이 없는 것이다.	Red.
L.25.—"Y" Alloy Bars L.30.—Aluminium Ingots (Virgin), 98% purity	
1.31 — Aluminium Ingots (Virgin), 99% purity	Red.
11.02. Titulimitani Amoj is one	Red, black.
L.34.—Aluminium Bars and Sections	riou, bluon.
STEEL.	
Number and Type.	Colour.
S. 1.—Mild Steel Bars, Bright	Yellow.
S. 2.—Alloy Steel Bars, Heat-treated	Red.
S 3 —Mild Steel Sheets	Green.
S. 4.—5% Nickel Steel Sheets S. 6.A.—"40" Carbon Steel Bars, Forging S. 6.B.—"40" Carbon Steel Bars, Machining	Red.
S. 6.A.—" 40" Carbon Steel Bars, Forging	Green, brown.
S. 6.B.—"40" Carbon Steel Bars, Machining	Green.
S.11.A.—Nickel Chrome Steel Bars, Forging	Red, yellow.
S.11.B.—Nickel Chrome Steel Bars, Machining	Red, blue, red.
S.14.A.—Carbon Case Hardening Steel Bars, Forging	Yellow, green.
S 14 B —Carbon Case Hardening Steel Bars, Machining	Yellow, brown.
S.15.A.—3% Nickel Case Hardening Steel Bars, Forging	Brown, yellow, brown.
S.15.A.—3% Nickel Case Hardening Steel Bars, Forging. S.15.B.—3% Nickel Case Hardening Steel Bars, Machining	Yellow, brown, yellow.
S.20.—Tinned Steel Sheets	Black, green.
S.21.—"20" Carbon Steel	Yellow, blue.
S 24 — Kev Steel	Red, green.
S.28.A.—Nickel Chrome Steel (100-ton) Bars, Forging	Red, blue.
S.28.B.—Nickel Chrome Steel (100-ton) Bars, Machining	Blue, red, yellow.
S.31.—Steel Wire, Cold Headed Bolts	Blue, yellow, blue.
S.61.A.—Stainless Steel Low Tensile Bars, Forging	Black, yellow, red.
S.61.B.—Stainless Steel Low Tensile Bars, Machining	Brown, yellow, red.
S. 62. A.—Stainless Steel High Tensile Bars, Forging	Yellow, red, yellow.
S.62.B.—Stainless Steel High Tensile Bars, Machining	Yellow, black, yellow.
S.65.A.—Nickel Chrome Steel Bars, Forging	Blue, black, red.
S 65 B — Nickel Chrome Steel Bars, Machining	Red, brown.
S.67.A.—5% Nickel Case Hardening Steel Bars, Forging S.67.B.—5% Nickel Case Hardening Steel Bars, Machining	Brown, yellow, blue.
S.67.B.—5% Nickel Case Hardening Steel Bars, Machining	Brown, red, blue.
S.68.A.—16% Tungsten Steel Bars, Forging	Yellow, black.
S.69.A.—31% Nickel Steel Bars, Forging	Blue, green, blue.
S.69.B.—3½% Nickel Steel Bars, Machining	Blue.
S.70.A.—"55" Carbon Steel Bars, Forging	Blue, green.
S.68.A.—16% Tungsten Steel Bars, Forging S.69.A.—31% Nickel Steel Bars, Forging S.69.B.—31% Nickel Steel Bars, Machining S.70.A.—"55" Carbon Steel Bars, Forging S.71.A.—"30" Carbon Steel Bars, Forging S.71.B.—"30" Carbon Steel Rormalised Bars, Machining S.76.A.—"50" Carbon Steel Normalised Bars, Machining S.76.A.—"40" Carbon Steel Rormalised Bars, Machining	Brown, green, brown.
S.71.B.—"30" Carbon Steel Normalised Bars, Machining	Yellow, green, yellow.
	Green, red, green.
S.76.B.—" 40 " Carbon Steel Bars, Machining	Green, blue, green.
S.76.B.—"40" Carbon Steel Bars, Machining S.77.A.—"30" Carbon Steel Bars, Forging	Yellow, blue, yellow.
S.77.B.—"30" Carbon Steel Bars, Machining S.79.A.—"55" Carbon Steel Bars, Forging	Brown, blue, brown.
S.79.A.—" 55 " Carbon Steel Bars, Forging	Green, red, blue.

S.80.A.—High Chromium Steel Bars, Forging

STANDARD COLOUR SCHEME FOR METALS—continued

	CC		

Dimin Continuent.	소리를 가게 잘 되다. 이 본을 나타다다.
Number and Type.	Colour.
S.80.B.—High Chromium Steel Bars Machining	Red, black, brown.
S.81.A.—Nickel Chrome Steel (70-ton) Bars, Forging S.81.B.—Nickel Chrome Steel (70-ton) Bars, Machining	Black, blue.
S.81.B.—Nickel Chrome Steel (70-ton) Bars, Machining	Black, brown.
0.02 A. THURELUIITOINE Case Hardening Steel Rore Forging	Red, brown, yellow.
S.82.B.—Nickel Chrome Case Hardening Steel Bars,	red, blown, yellow.
Machining	Vallow woll amount
S.83.A.—5% Nickel High Tensile Case Hardening Steel	Yellow, red, green.
Dars, Forging	Red, brown, blue.
S.83.B.—5% Nickel High Tensile Case Hardening Steel	rica, brown, bine.
Dars. Machining	Red, brown, green.
B.S.S.51.—Wrought Iron, Grade "B"	Green, black, green.
	orcon, black, green.
Tubes.	
Number and Type.	0.1
1 1 " 90 " Comban Cu - 1 m 1	Colour,
T. 2.—Steel (Nickel Chrome) Arla Tubes	Green.
T. 4.—Duralumin Tubes, Heat-treated	Red,
T 5 _ "50." Corbon Steel Tub. TT	Yellow.
T. 5.—"50" Carbon Steel Tubes, Heat-treated	Red, yellow.
T. 7.B.—(Supplemented by D.T.D. 108) Copper Tubes, Annealed	
T. 7.C.—Copper Tubes, Annealed	White.
X Brogg Tubes Appealed	Black.
T 9 — Aluminium Tuboc	Blue.
T 14 — Carbon Stool Aydo Walls TI	Black.
T 18—Brass Tubes Hard	Red, blue.
T.18.—Brass Tubes, Hard T.21.—"30" Carbon Steel Tubes, Annealed T.26.—"15" Carbon Steel Tubes, Annealed	Red, blue.
T 26 — "15" Carbon Steel Tubes, Annealed	Blue.
	Yellow, blue.
1 48 — III m/m Rroog II when for D. J.	Yellow.
2.20. To m/m, brass rupes for radiators	Black.
A.M. Specifications.	
그 그리고 그리고 있는 점점 이 가게 없을 것이 되었다. 이 이외로 아버지 않아 있었다. 김 사가는 이 경험을 갖고 있는 데를 들어 있다고 있다. 그는 이 그리고 있다.	
Number and Type. D.T.D. 1.—Nickel Chromium Steel Case Hardening	Colour.
	Blue, yellow, black.
D. L.D. 3.—High Nickel Case Hardening Steel (S 17 Type)	Blue, brown, yellow.
D.I.D. 4.—Chrome vanadium Steel Valve Spring Wire	Red, green, red.
D.I.D. 5.—Carbon Steel Valve Spring Wire	Black, green.
D.I.D. 6.—Cobalt Chrome Valve Steel	Red, brown, red.
D.I.D. 7.—Carbon Chrome Valve Steel	Blue, brown, blue.
D.I.D. 10.—High Nickel Copper Allow	Red, blue.
D.I.D. II.—Phosphor Bronze Wire and Strip	Yellow.
D.I.D. 12.—Low Carpon Steel Sheets	Yellow, green.
D.T.D. 13.—Silicon Chrome Valve Steel	Green, brown, green.
D.T.D. 23.—Chromium Stainless Steel Sheets	Brown, green.
11 1 11 39 - High Chromium Chairles Cu 1 cu	Blue.
D.T.D. 41.—"15" Carbon Steel Tubes for Welding	Yellow

STANDARD COLOUR SCHEME FOR METALS—continued

A.M. Specifications—continued.	
Number and Type.	Colour.
D.T.D. 42.—Chromium Nickel Stainless Steel Sheets—	
High Tensile	Red, black.
High Tensile	Black.
D.T.D. 43.—Chromium Nickel Stainless Steel Bars—	
	Red, black.
	Black.
D.T.D. 46.—Chromium Stainless Steel Strip	Brown.
D.T.D. 46.—Chromium Stainless Steel Strip D.T.D. 49.—High Nickel Chrome Steel for Valves	Red, yellow, red.
	Brown.
D.T.D. 53 —Chromium Stainless Steel Bars—	
Low Tensile	Black, yellow, black.
D.T.D. 54.—Nickel Chromium Steel Strip—	
Hardened and Tempered	Red, yellow.
Softened	Yellow, red, green.
D.T.D. 57.—Chromium Nickel Stainless Steel Sheet and	
Strip	Black, blue.
D.T.D. 60.—High Chromium Stainless Steel Sheets and	
Strip	Blue, black, blue.
D.T.D. 61.—Chromium Nickel Welding Wire, Stainless	Yellow
D.T.D. 76—High Chromium Stainless Steel Bars	Blue, black, blue.
D.T.D. 76.—High Chromium Stainless Steel Bars D.T.D. 78.—Phosphor-Bronze Bars, Cold drawn	Red, yellow.
D.T.D. 79.—Phosphor-Bronze Tubes, Cold drawn	Red, yellow.
D.T.D. 82.—Carbon Steel Welding Wire	Yellow, green, blue.
D.T.D. 87.—Steel suitable for Nitrogen Hardening	Red, black, red.
D.T.D. 89.—Steel Tubes, Low Carbon Manganese	Green, yellow, green.
DTD 91—Steel Tubes Medium Carbon Manganese	Red, yellow, red.
D.T.D. 91.—Steel Tubes, Medium Carbon Manganese D.T.D. 97.—Non-corrosive Steel Tubes, Low Tensile	Black, yellow, red.
D.T.D. 98.—Nickel Chromium Steel Sheet, 40/50-tons	
Proof—	
Hardened and Tempered	Black, blue, black.
Softened	Black, brown.
D.T.D. 99.—Nickel Chromium Steel Strip, 55-tons Proof	Blue, yellow, black.
D.T.D.100.—Nickel Chromium Steel Strip, 40/50-tons	
Proof	Red, yellow, black.
D.T.D.102.—Non-corrosive Steel Tubes, 35-ton	Blue, green.
D.T.D.105.—Non-corrosive Steel Tubes, 50-ton	Blue, brown.
D.T.D.108.—Copper Tubes (Supplementary to T.7.B.)	White.
D.T.D.111.—Metal Coated Wrought Light Alloy Sheet	Yellow, blue.
D.T.D.113.—Sections and small round Tubes for Welding	Green, yellow, blue.
D.T.D.115.—Silico Manganese Steel Bars	Red, black, green.
DTD 117 —Gunmetal Bar Hard Rolled	Red, black, green.
D.T.D.117.—Gunmetal Bar, Hard Rolled D.T.D.118.—Magnesium Alloy Sheets (suitable for Welding)	Red, blue, black.
D.T.D.120.—Magnesium Alloy Sheets (not suitable for	
Welding)	Red, brown, black.
DTD 194 —Carbon Steel Strin (suitable for Welding)	Red, blue, green.
D.T.D.125.—Magnesium Alloy Sheets (Hard Rolled, not	
D. I. D. 120 Magnesium Thoy Choose (Laste Lorder, 120	TO 1

STANDARD COLOUR SCHEMES FOR METALS—continued

A.M. SPECIFICATIONS—continued.

Number and Type.	Colour.
D.T.D.127.—Magnesium Alloy Bars and Sections (16-tons) D.T.D.129.—Magnesium Alloy Bars and Sections (20-tons) D.T.D.137.—Carbon Steel Strip, 50-tons Proof D.T.D.138.—Carbon Steel Strip, 65-tons Proof D.T.D.141.—Mild Steel Sheets, C.R.C.A. D.T.D.146.—High Chromium non-corroding Steel Sheet and Strip, 30-tons Proof	Yellow, red, black. Yellow, blue, black. Red, blue, brown. Red, green, blue. Yellow, red, brown. Red, green, brown.
Solders.	
Number and Type.	4.
D.T.D.51.—Cadmium Zinc Solder	Colour.
B.E.S.A.219/1925.—Grade "A"	Green.
B.E.S.A.219/1925.—Grade "B"	Blue.
B.E.S.A.219/1925.—Grade "C"	Yellow.
B.E.S.A.219/1925.—Grade "D" (Plumbers)	Black. Brown.
Tool Steels,	
Number and Type.	4 ,
	Colour.
A.M.71.—Temper 1. Carbon Tool Steel, Extra Hard A.M.71.—Temper 2. Carbon Tool Steel, Very Hard	Red, blue, yellow.
A.M.71.—Temper 3. Carbon Tool Steel, Hard	Red, yellow, blue.
A.M.71.—Temper 4. Carbon Tool Steel, Medium Hard	Red, yellow, green.
A.M.71.—Temper 5. Carbon Tool Steel, Tough	Red, green, yellow.
A.M.71.—Tungsten Tool Steel. Grade "A"	Red, black, yellow. Yellow, blue, green.
A.M.71.—Tungsten Tool Steel, Grade "B"	Blue vellow green

TABLE OF GAUGES

No.	Standard Wire Gauge	Shakes Birmir Metal	igham	Shakes- peare's Birming- ham Wire	No.	Standard Wire Gauge	Shakes - Birmir Metal	igham	Shakes peare's Birming ham Wire
	Inch	Inch	M.M.	Gauge Inch		Inch	Inch	M.M.	Gauge Inch
000	-372	∙005	127	(C. 1975)	20	-036	-065	1.651	-039
00	-348	-006	1524		21	032	-068	1.727	.033
0	324	.007	.1778	1500	22	-028	.072	1.829	-030
- 1	-300	-008	203	296	23	024	077	1.956	-027
2	-276	.0095	-229	270	24	022	082	2.082	.024
3	-252	-0105	.254	256	25	020	-090	2 . 286	-022
4	232	-012	-305	240	26	-018	100	2.54	020
5	-212	.014	-356	213	27	0164	·112	2 845	-0185
6	-192	-016	-406	200	28	0148	·124	3 150	.017
7	176	-019	.483	-183	29	-0136	.136	3 454	-016
8	-160	-0215	-533	167	30	-0124	150	3.810	-015
9	.144	.024	-584	-150	31	-0116	166	4.216	-014
10	-128	.027	⋅686	136	32	0108	·182	4 623	-013
11	-116	.031	.793	121	33	-0100	200	5.080	∙012
12	104	.035	-889	-110	34	0092	216	5 · 486	-011
13	-092	.038	-965	-096	35	-0084	-238	6.045	-010
14	-080	-042	-067	-086	36	.0076	.250	6.350	-009
15	-072	-047	1.194	074	37	-0068	-270	6.858	-008
16	.064	-051	1 :295	:067	38	-0060	-278	7.061	.007
17	-056	.055	1.397	-060	39	0052	.289	7 . 341	-0065
18	-048	.060	1.524	-051	40	0048	-300	7 - 620	-008
19	.040	.063	1.600	-046					10.000

MENSURATION OF SURFACES AND SOLIDS

The circumference of a circle = diameter × ¾ (or 3 1416); area of circle = square of the diameter \times 0.7854.

The circumterence of a crucie = diameter × \$\psi\$ (or \$\) 1410}; area of three = square of the diameter × \$\psi\$ (or \$\) 1410}; area of three = square of the diameter × \$\psi\$ (or \$\) 1410}; area of the diameter × \$\psi\$ (or \$\) 1410}; area of the diameter × \$\psi\$ (or \$\) 1410}; area of the diameter × \$\psi\$ (or \$\) 1410; area of the present = \$\psi\$ and of two parallel sides × height. Area of any right-lined figure of four or more unequal sides is found by dividing it into triangles, finding area of each and adding together.

For any regular polygon, inscribe a circle; then \$\frac{1}{2}\$ radius of that circle × length of one side × number of sides = area.

The area of a parabola = base × height × \$\frac{1}{2}\$.

The area of a parabola = base × height × \$\frac{1}{2}\$.

Surface and cubic content of prism or cylinder—lst (area of two ends) + (length × perimeter) = surface; 2nd, area of base × height = content.

For a cone or pyramid—lst, \$\frac{1}{2}\$ (slant height) × perimeter of base) + area of base = surface; 2nd, \$\frac{1}{2}\$ (area of base × perpendicular height) = content.

For a cube or parallelepipedon—lst, sum of areas of all the sides = surface; 2nd, length × breadth × depth = content.

For a sphere—lst, square of diameter × 3.1416 = surface; 2nd, cube of diameter × 0.5236 = content.

Area of sector of circle = length of are × \$\frac{1}{2}\$ radius.

content. Area of sector of circle = length of arc \times $\frac{1}{2}$ radius. Area of segment of circle = area of sector less area of triangle. Side of square of area equal circle = diameter \times 0 -8862. Diameter of circle equal in area to square = side \times 1 1284.

TUBE CONSTANTS

TABLE SHOWING RADII OF GYRATION, SECTIONAL AREAS, MOMENTS OF INERTIA & MODULI OF SECTION OF ROUND TUBES.

K= V	$\frac{1}{A} = \frac{1}{A}$	D ² + d ²	1	Λ=πt i	D-t)	I=	# (D4-	d*)	Z=2	1(D-2t + 4	-2t²) D	
Outside Diamete	er, ins.	1	1	-	1	7	1	11	11	13	11	1 8
Decimals of an	inch	∙375	-5	·625	-75	·875	1.0	1 · 125	1 - 25	1.375	1.5	1.62
24 G -022*	K A I Z	·125 ·0244 ·00038 ·002	·1691 ·0399 ·0009 ·0039	·2133 ·0417 ·0019 ·0061	·2575 ·0503 ·0033 ·0089	·3017 ·059 ·0054 ·0123	·3458 ·0676 ·0081 ·0162	-39 -0762 -0116 -0207	·4342 ·0849 ·0161 ·0257	. ·4784 ·0935 ·0215 ·0313	-5226 -1021 -0279 -0373	·566 ·110 ·035 ·043
23 G -024"	K A I Z	·1244 ·0265 ·00041 ·0022	·1685 ·0359 ·001 ·0041	·2126 ·0453 ·0021 ·0066	·2568 ·0547 ·0036 ·0096	-3012 -0642 -0058 -0133	-345 -0736 -0087 -0175	-3893 -083 -0125 -0223	·4337 ·0925 ·0174 ·0278	·4777 ·1019 ·0232 ·0338	·5219 ·1113 ·0303 ·0404	·565 ·120 ·038 ·047
22 G (Approx.) ·025"	K A I Z	·1241 ·0275 ·00042 ·00226		·2122 ·0471 ·00212 ·0068	·2565 ·0569 ·00375 ·0099	·3008 ·0668 ·00605 ·0138	·3446 ·0766 ·0091 ·0182	389 0864 0131 0233	·4332 ·0962 ·0181 ·0239	·4772 ·106 ·0242 ·0351	·5212 ·116 ·0315 ·042	·5655 ·126 ·0405 ·0498
22 G -028*	K A I Z	-123 -0305 -00046 -0025	·1672 ·0415 ·00116 ·0045	·2113 ·0525 ·0023 ·0075	·2555 ·0635 ·0042 ·0112	·2998 ·0745 ·0067 ·0153	·3437 ·0855 ·0101 ·0202	·388 ·0965 ·0145 ·0258	·4322 ·1075 ·0201 ·0321	-4762 -1185 -0269 -0391	·5205 ·1295 ·0351 ·0468	-564° -1408 -0448 -0555
21 G -032*	K A I Z	·1218 ·0345 ·00052 ·0028	·1658 ·047 ·0013 ·0051	·21 ·0596 ·0026 ·0084	·2541 ·0722 ·0046 ·0124	2982 -0847 -0075 -0172	3442 -0973 -0114 -0228	·3866 ·1098 ·0164 ·0291	·4309 ·1224 ·0226 ·0362	·475 ·135 ·0304 ·0447	-519 -1475 -0398 -053	-563 -160 -0508 -0628
20 G ·036*	K A I Z	·1205 ·0383 ·00056 ·003	1645 0524 0014 0058	·2086 ·0666 ·002 ·0093	-2528 -0807 -005 -0135	·2969 ·0948 ·0083 ·019	·341 ·109 ·0127 ·0254	-3852 -1231 -0183 -0326	-4295 -1372 -0254 -0407	·4736 ·1514 ·034 ·0495	·5176 ·1655 ·0442 ·0592	-5621 -1797 -0567 -0698
19 G ∵04″	K A I Z	·1192 ·0421 ·00059 ·0032	·1632 ·0578 ·0016 ·0065	·2073 ·0735 ·0032 ·0101	·2514 ·0892 ·0056 ·015	2955 -1049 -0097 -021	-3395 -1207 -0139 -0279	·3839 ·1364 ·0201 ·0358	·4281 ·1521 ·0279 ·0447	·4721 ·1679 ·0375 ·0545	·5162 ·1836 ·049 ·0653	·5609 ·1993 ·0626 ·0771
18 G -048″	K A I Z	·1167 ·0493 ·00067 ·0036	·1606 ·0682 ·0018 ·0072	·2048 ·087 ·0037 ·0117	·2486 ·1059 ·0065 ·0175	·2928 ·1247 ·0107 ·0245	·337 ·1436 ·0163 ·0326	·3812 ·1624 ·0236 ·0419	·4253 ·1813 ·0328 ·0524	·4694 ·2001 ·044 ·0641	-5135 -219 -0577 -077	-558 -2378 -074 -0911

TUBE CONSTANTS—continued

TABLE SHOWING RADII OF GYRATION, SECTIONAL AREAS, MOMENTS OF INERTIA & MODULI OF SECTION OF ROUND TUBES.

K= V	$\sqrt{\underline{I}} \sqrt{\underline{D}}$	2 + d2 4	A	.—πt(]	D-t)	I=	π/64 (D⁴-d	*)	$Z = \frac{\Lambda}{4}$	(D-2t+	2t²) D	
Outside Diamete	er, ins.	12	17	2.0	21	21	21	21	2§	21	27	3
Decimals of an	inch	1 -75	1 -875	2.0	2 · 125	2 · 25	2 · 375	2.5	2 · 625	2 · 75	2 · 875	3.0
24 G ·022″	K A I Z	·6109 ·1194 ·0445 ·0509	-6552 -1281 -0548 -0585	·6994 ·1367 ·0667 ·0667	·7435 ·1455 ·0802 ·0755	·7877 ·154 ·0955 ·0849					,	
23 G -024"	K A I Z	·6102 ·1301 ·0486 ·0554	·6545 ·1396 ·0599 ·0638	·6987 ·149 ·0728 ·0728	·7428 ·1584 ·0876 ·0824	·787 ·1679 ·1041 ·0925	-8311 -1726 -1226 -1032					
22 G (Approx.) . 025"	K · A I · Z	-6098 -135 -0504 -0576	·6542 ·145 ·0622 ·0662	-6983 -155 -0766 -0766	·7425 ·165 ·0909 ·0855	·7867 ·174 ·107 ·0954	·8309 ·184 ·126 ·1074	·875 ·194 ·148 · ·1191	Fo T1;	r Specif T6 ; T onl	ications 21 ; T2	6;
22 G •028″	K A I Z	-6089 -1515 -0562 -0642	-6531 -1625 -0693 -074	·6974 ·1735 ·0844 ·0844	·7414 ·1845 ·1015 ·0955	·7856 ·1955 ·1207 ·1073	-8296 -2065 -1423 -1198	·874 ·2175 ·1661 ·1329				
21 G -032″	K A I Z	·6073 ·1727 ·0637 ·0728	-6516 -1852 -0787 -0839	·696 ·1978 ·0958 ·0958	·74 ·2103 ·1153 ·1085	·7841 ·2229 ·1371 ·1219	·8283 ·2355 ·1616 ·1361	-8725 -248 -1889 -1511	-9165 -2606 -219 -1669			
20 G -036"	K A I Z	-606 -1938 -0711 -0813	-6502 -2079 -0879 -0938	-6946 -2221 -1071 -1071	·7384 ·2362 ·1289 ·1213	·7828 ·2503 ·1533 ·1363	·827 ·2645 ·1807 ·1522	·8711 ·2787 ·2115 ·1692	·9151 ·2928 ·2456 ·1871	-9596 -307 -2827 -2056		
19 G -04"	K A I Z	-6046 -215 -0787 -0899	6489 -2307 -0972 -1037	·6932 ·2462 ·1185 ·1185		·7814 ·2778 ·17 ·1511	·8257 ·2936 ·2006 ·1689	·8698 ·3093 ·2346 ·1877	9138 325 -2721 -2074	-9582 -3407 -3135 -228	1 ·0024 ·3564 ·3588 ·2496	
18 G -048"	K A I Z	-602 -2567 -0931 -1064	-646 -2755 -115 -1228	-6905 -2944 -1404 -1404	3132 169	-7785 -3321 -2014 -179	-823 -3509 -2376 -2001	-867 -3698 -278 -2224	9109 3886 3227 -2459	·9553 ·4075 ·3721 ·2706	-4261	1 · 043 · 446 · 488 · 323

TUBE CONSTANTS—continued

TABLE SHOWING RADII OF GYRATION, SECTIONAL AREAS, MOMENTS OF INERTIA & MODULI OF SECTION OF ROUND TUBES.

K= \	$I_{\overline{A}} = V$	$\frac{D^2+d^2}{4}$,	A=πt (D-t)	I=	π/ ₆₄ (D⁴-d	•)	$Z=\frac{A}{4}$	(D-2t+]	2t²))	
Outside Diame	er, ins.	1	3	1	1	ž	1	11	11	13	13	15
Decimals of a	ı inch	-375	-5	-625	.75	-875	1.0	1 -125	1 . 25	1 · 375	1.5	1.62
17 G -056″	K A I Z	·114 ·0561 ·00076 ·0039	·1582 ·0781 ·0019 ·0078	-2022 -1001 -0041 -0131	-246 -1221 -0074 -0197	-29 -1441 -0121 -0277	-3342 -166 -0185 -0371	·3784 ·188 ·0269 ·0479	·4226 ·21 ·0376 ·0601	-4666 -232 -0506 -0736	·5109 ·254 ·0663 ·0884	-555 -276 -085 -104
16 G •064"	K A I Z	-1122 -0625 -00082 -0042	·1558 ·0876 ·0021 ·0085	·1996 ·1128 ·0045 ·0144	-2436 -1379 -0082 -0218	-2873 -163 -0135 -0308	-3317 -1882 -0207 -0414	·3758 ·2133 ·0301 ·0536	·4199 ·2385 ·0421 ·0673	·464 ·2636 ·0567 ·0826	·508 ·2887 ·0746 ·0995	-552 -313 -095 -117
15 G -072″	K A I Z		·1534 ·0968 ·0023 ·0091	-1972 -1251 -0049 -0156	·241 ·1534 ·0089 ·0238	-285 -1816 -0148 -0338	·329 ·2099 ·0227 ·0455	3731 2382 0332 059	·4171 ·2665 ·0464 ·0747	·4613 ·2947 ·0627 ·0912	·5052 ·3230 ·0825 ·11	-549 -351 -106 -130
14 G -08″	K A I Z			·1947 ·137 ·0052 ·0166	·2385 ·1684 ·0096 ·0256	-2821 -1998 -016 -0365	·3265 ·2312 ·0246 ·0493	-3706 -2636 -0361 -0641	·4146 ·2941 ·0506 ·0809	·4587 ·3255 ·0685 ·0997	5026 -3569 -0903 -1204	-547 -388 -116 -143
13 G -092″	K A I Z				·2349 ·1902 ·0105 ·028	2783 -2263 -0173 -0396	·3228 ·2624 ·0273 ·0546	·3666 ·2985 ·0401 ·0713	·4107 ·3347 ·0564 ·0903	·4548 ·3708 ·0767 ·1116	·4988 ·4069 ·1014 ·1352	·543 ·443 ·130 ·161
12 G ·104″	K A I Z					·275 ·2519 ·0191 ·0436	-319 -2927 -0298 -0597	·363 ·3336 ·044 ·0783	·4069 ·3744 ·062 ·0994	·4509 ·4157 ·0844 ·1228	·495 ·4561 ·1117 ·149	·539 ·496 ·144 ·177
11 G -116"	K A I Z						·3152 ·3221 ·032 ·064	-359 -3676 -0478 -0843	·403 ·4132 ·0671 ·1074	·447 ·4587 ·0916 ·1333	-4911 -5043 -1216 -1621	-535 -549 -157 -193
10 G -128"	K A I Z							·3554 ·4009 ·0506 ·09	-3992 -4512 -0718 -1149	·4432 ·5014 ·0984 ·1431	·4872 ·5517 ·1308 ·1743	-531 -601 -169 -208

TUBE CONSTANTS—continued

TABLE SHOWING RADII OF GYRATION, SECTIONAL AREAS, MOMENTS OF INERTIA & MODULI OF SECTION OF ROUND TUBES.

K= √	$\frac{1}{A} = \sqrt{D}$	2+d2 4	A=	=πt (D	-t)	$I=\frac{7}{6}$	(D'-d')		$z=\frac{A}{4}$	D-2t+	2t*)	
Outside Diamete	er, ins.	12	17	2	21	21	2}	21	25	2}	27	3
Decimals of an	inch	1 · 75	1 875	2.0	2 125	2 · 25	2 - 375	2 5	2 625	2 .75	2 · 875	3.0
17 G -056*	K A I Z	-5992 -298 -107 -1223	·6434 ·32 ·1324 ·1412	-6876 -3419 -1616 -1616	-7317 -3639 -1949 -1834	.7759 .3859 .2324 .2066	-8201 -4079 -2743 -231	-8643 -4299 -3212 -257	·9081 ·451 ·373 ·2842	·9526 ·4739 ·4301 ·3128	-9967 -4959 -4927 -3428	1 ·041 ·5178 ·561 ·374
16 G -064*	K A I Z	-5964 -339 -1208 -1379	-6406 -3641 -1495 -1595	-6849 -3893 -1826 -1826	·7288 ·4144 ·2303 ·2073	·7731 ·4396 ·2628 ·2336	-8172 -4647 -3104 -2614	·8613 ·4898 ·3635 ·2908	9057 -515 -4224 -3218	·9499 ·5401 ·4873 ·3544	-9939 -5653 -5586 -3886	1 ·038 ·590 ·636 ·424
15 G ∵ ∙072″	K A I Z	-5938 -3796 -1338 -1529	-638 -4078 -1659 -177	·6821 ·4361 ·2029 ·2029	·7261 ·4644 ·245 ·2306	·7763 ·4927 ·2925 ·26	·8147 ·5209 ·3458 ·2912	·8585 ·5492 ·4051 ·3241	-9031 -5775 -4709 -3588	·9471 ·6058 ·5434 ·3952	·9913 ·634 ·6232 ·4335	1 -035 -662 -710 -473
14 G % :08″	K A I Z	-591 -4197 -1466 -1676	-6352 -4511 -1821 -1947	·6792 ·4825 ·2227 ·2227	-7235 -5139 -2691 -2533	·7675 ·5444 ·3215 ·2858	-812 -5768 -3802 -3202	·8558 ·6082 ·4456 ·3565	-9003 -6396 -518 -3948	-9441 -671 -5983 -4351	-9885 -7024 -6863 -4774	1 ·032 ·733 ·782 ·521
13 G -092*	K A I Z	-587 -4792 -1654 -189	-6312 -5153 -2054 -2191	·6753 ·5514 ·2515 ·2515	·7195 ·5875 ·3024 ·2862	-7636 -6237 -3636 -3232	-8078 -6598 -4305 -3625	·8517 ·6959 ·5051 ·4041	-8961 -732 -5879 -4479	-9403 -7682 -6792 -494	·9845 ·8043 ·7796 ·5423	-840 -889
12 G ·104″	K 'A I Z	-583 -5377 -183 -2091	-6273 -5786 -2277 -242	·6715 ·6194 ·2792 ·2792	-338	·7596 ·7011 ·4047 ·3597	·804 ·7419 ·4794 ·4037	·8477 ·7828 ·5627 ·4502	-8921 -8236 -6555 -4994	·9362 ·8644 ·7577 ·5511		993
11 G -116″	K A I Z	-5791 -5954 -1998 -2283	-6232 -6409 -2484 -2656	-6675 -6865 -3058 -3058	·732 ·3706	-7555 -7776 -4441 -3947	-8 -8231 -5265 -4434	-8437 -8687 -6186 -4949	·888 ·9142 ·7201 ·5493	-9322 -9598 -8339 -6065	1 · 0053 · 9582	1 ·020 1 ·050 1 ·094 ·729
10 G -128″	K A I Z	-5752 -6522 -2158 -2466		·6634 ·7527 ·3313 ·3313	·803 ·4019	·7516 ·8533 ·4821 ·4285	572	-8398 -9538 -6726 -5381	-884 1 -004 -7843 -5976	-9079	1 · 1046 1 · 0439	1 19

TO FIND THE WEIGHT OF A CASTING FROM THAT OF THE PATTERN

	Cast Iron	Yellow Brass	Gun Metal	Zinc	Copper	Aluminiun
Bay Wood	. 8.8	9.9	10 · 3	8.5	10.5	3.2
Beech	. 8.5	9.5	10.0	8.2	10.1	3.1
Cedar	16.1	18.0	18.9	15-6	19.2	5.8
Cherry	10.7	12.0	12.6	10.4	12.8	3.9
Linden	12.0	13.5	14.1	11.6	14.3	4.3
Mahogany	8.5	9.5	10.0	8.2	10.1	3.1
The state of the s	9.2	10.3	10.8	8.9	11.0	3.2
Oak	9-4	10.5	11.0	9.1	11.2	3.4
Pear	10.9	12.2	12.8	10.6	13.0	3.9
Pine, white	14.7	16.5	17.3	14.3	17.5	5.3
Pine, yellow	13.1	14.7	15.4	12.7	15.6	4.7
Whitewood	. 16.4	18.4	19.3	15.9	19.5	5.9

Allowance must be made for the metal in the pattern.

REDUCTION FOR ROUND CORES AND CORE PRINTS

RULE —Multiply the square of the diameter by the length of the core and prints in inches, and the product by 0.014. This will give the weight of the white pine core, to be deducted from the weight of the pattern.

PLATE GAUGES

AND

WEIGHTS

Gauge	Thickness in Inches	Weight in lbs./sq. ft. in Mild Steel	Weight in lbs./sq ft. in Duralumin
30	-0124	-50	.18
28	-0148	-59	-22
26	-018	-72	-26
24	-022	-88	-32
22	-028	1.12	-41
20	-036	1:44	-52
18	-048	1.92	. 70
16	-064	2.56	-93
14	08	3 · 20	1.16
12	-104	4.16	1.51
10	-128	5.12	1.86
8	-16	6.40	2.33
6	-192	7 - 68	2 · 80
5	-212	8:48	3.096
4	-232	9 - 28	3 : 38
3	.252	10.08	3.68
2	-276	11.04	4.03
1	-300	12.00	4 · 328

WEIGHTS AND DIMENSIONS OF ALUMINIUM SHEETS

(Together with Brass, Copper, Steel and Tin for Comparison)

Sr	ZE	Тню	KNESS	MAN Phase	WEIGHT:	LBS. PER SQ	FOOT.	
.W.G.	Birm. Sheet Gauge	Inch	Mm.	Alum- inium	Brass	Copper	Steel	Tin
		375	9 - 525	5 · 18	16.7	17 -1	15.0	14-4
3/0		-372	9 · 449	5 · 14	16.5	17.0	14.9	14 - 3
2/1		-348	8 · 839	4.81	15-5	15.9	13.9	13.4
1/0		324	8 · 229	4 · 48	14·4	14.8	13.0	12.5
	Maria I	-312	7 - 937	4.31	13.9	14 · 2	12.5	12.0
1	40	-300	7 · 620	4.15	13 · 3	13.7	12 · 0	11.5
	39	289	7.341	3.99	12-9	13 · 2	11.6	11:1
	38	.278	7.061	3 84	12 -4	12.7	11.1	10 - 7
2		276	7.010	3.81	12.3	12.6	11.0	10.6
	37	-270	6.858	3 · 73	12.0	12.3	10.8	10 4
3	SAY THE	.252	6.401	3 48	11.2	11 5 11 4	10 - 1	9.68
	36	.250	6 350	3·45 3·29	11·1 10·6	10.9	10.0	9.60
	35	-238	6 · 045 5 · 893	3.29	10.0	10.9	9·52 9·28	9.14
4	34	·232 ·216	5.486	2.98	9.61	9.86	9·28 8·64	8.91
5	34	212	5.385	2.93	9.43	9.68	8.48	8.31
บ	33	200	5 080	2.76	8.90	9-12	8.00	8 · 14 7 · 68
6	30	192	4 877	2.65	8.51	8.76	7.68	7.37
۰ ۱		187	4 762	2.58	8.32	8 53	7.48	7.18
2003	32	.182	4 623	2.52	8.10	8 31	7.28	6 99
7	Aston patrick	.176	4.470	2.43	7.83	8.03	7.05	6.76
	31	166	4 216	2.29	7.38	7.58	6.64	6.37
8		-160	4.064	2 - 21	7.12	7 - 30	6.40	6.15
35.5	30	-150	3 810	2.07	6 - 67	6.85	6.00	5.76
9		-144	3.658	1-99	6.41	6 - 57	5.76	5 . 53
7. W. S.	29	-136	3.454	1.88	6.05	6.20	5.44	5 22
10	3,578,9146	-128	3 251	1.77	5 69	5 · 84	5.12	4.92
335	20,7643,546	-125	3 175	1.73	5 . 56	5.70	5.00	4.80
JAN S	28	124	3 · 150	1.71	5.52	5 · 66	4.96	4.76
11		-116	2 946	1.60	5.16	5 . 29	4 64	4.46
	27	.112	2 845	1 55	4.98	5.11	4 48	4.30
12	1, 1,244,75	-104	2.642	1 44	4.63	4.75	4 16	3.99
1000	26	•100	2.540	1 38	4 · 45	4.57	4.00	3 · 84
13		.092	2.337	1.27	4.09	4.20	3.68	3.53
####	25	-090	2.286	1.24	4.00	4.11	3 60	*3 · 46
400	24	.082	2.082	1.13	3.65	3.75	3 .28	3 · 15
14		-080	2.032	1.11	3.56	3 - 65	3 20	3.07
	23	.077	1.956	1·07 ·995	3.43	3.52	3.08	2.96
15	22	-072	1.829	940	3.20	3 - 29	2.88	2.77
Server .	21	-068	1 · 727	.940	3.02	3.11	2.72	2.61
Specif	ic gravity			2.67	8.62	8 - 82	7.74	7 40
Datia	of weights		机自动性排列机	1	3 23	3 - 30	2.90	2.78

WEIGHTS AND DIMENSIONS OF ALUMINIUM. SHEETS—continued

(Together with Brass, Copper, Steel and Tin for Comparison)

Sız	E	Титска	TESS		WEIGHT:	LBS. PER SQ.	1001.	a selfenti <u>es.</u> Alaki eli aktol
s.w.g.	Birm. Sheet Gauge	Inch	Mm.	Alum- inium	Brass	Copper	Steel	Tin
9.71 (d-4)	20	-065	1.651	-898	2.89	2.97	2.60	2.50
16	- 24	-064	1.626	-885	2.85	2.92	2.56	2 46
10	19	-063	1.600	-870	2.80	2.88	2.52	12.42
	1.0	.062	1.587	-857	2.76	2.83	2.48	2.38
Mary 1	18	060	1.524	829	2.67	2.74	2 40	2 · 30
17	10	-056	1 422	.774	2.49	2.56	2 24	2.15
611	17	-055	1.397	-760	2.45	2 51	2 · 20	2.11
	16	-051	1 295	.705	2.27	2.33	2.04	1.96
18	10	-048	1.219	663	2 13	2.19	1 - 92	1.84
10	15	047	1.194	649	2 09	2.15	1.88	1.81
	14	042	1.067	-580	1 87	1.92	1.68	1.61
19	14	-040	1.016	-552	1.78	1.83	1.60	1 54
19	13	-038	-965	-525	1.69	1.74	1.52	1.46
20	13	036	914	-497	1.60	1.65	1.44	1.38
20	12	-035	-889	484	1.56	1.60	1.40	1.34
21	12	-032	-813	442	1.42	1.46	1.28	1 .23
21	11	031	-793	429	1 38	1.42	1.24	1.19
22	11	-028	711	-387	1.25	1.28	1.12	1.08
22	10	027	686	373	1.20	1.24	1.08	1.04
	10	024	-610	332	1.07	1.10	-960	.921
23	9	-024	-584	-318	1.02	1.05	-920	-883
	, y	023	559	-304	-979	1.01	-880	-845
24	8	-022	-533	290	935	960	840	-806
	8	020	-508	276	-890	-914	-800	-768
25	7	019	-483	262	-846	-868	-760	-730
	10.00	018	457	249	801	-823	720	-691
26		-0164	416	227	-730	-750	-656	-630
27	6	-0160	-406	221	.712	.731	-640	-614
	0	-0156	397	215	-694	.713	624	-599
		0148	376	204	658	677	592	-568
28	5	-0140	-356	193	-623	-640	-560	-537
	5	-0140	-345	188	605	-622	-544	-525
29		0130	315	171	-552	-566	-496	470
30		0124	305	166	-534	-548	480	-46
	4	-0120	-267	-145	-467	-480	-420	40
	3	-0090	229	125	-400	-412	360	340
	2	-008	-203	111	-356	.366	∙320	-30
Spec	ific gravit	y	1276 (G. 817)	2:67	8 · 62 3 · 23	8 · 82 3 · 30	7·74 2·90	7·40 2·78

DURALUMIN WEIGHTS

WIRE

	» Decimal	Millimetre	Approxima	te Weight	
S.W.G.	Equiva- lent	Equiva- lent	Per 100 ft. lbs.	Kilos per 100 metres	Length
0	-324	8 · 23	10-32	15.36	
1001	-300	7.62	8 · 84	13 - 15	
2 3	.276	7.01	7 - 52	11 - 19	
3	.252	6.40	6 - 23	9 - 27	Supplied in
4	232	5.89	5 - 27	7.84	coils up to
5	-212	5.38	4.42	6.58	30 ft.
5 6 7	192	4.88	3.60	5.36	(9 metres)
7	.176	4.47	3 04	4.52	
8	·160	4.06	2 · 51	3.73	
9	·144	3.66	2.03	3.02	
10	·128	3 · 25	1 · 63	2.43	
11	·116	2.95	1 32	1.96	
12	-104	2.64	1 · 07	1.59	
13	-092	2.34	-83	1 · 24	
14	-080	2.03	-62	-92	
15	.072	1.83	-51	-76	Service and the party of
16	-064	1.63	-40	-60	
17	-056	1.42	-31	-46	NOTE SENTE
18	-048	1.22	-22	•33	
19	-040	1.02	-16	-24	国际的基础图
20	.036	-91	-13	∙19	
21	.032	-81	-10	-15	
22	.028	-71	-08	•12	
23 24	·024 ·022	-61 -56	-06	-09	I de Carrier de Carrier

ROUND RODS AND BARS

Sizes	Decimal Equiva-	Millimetre	Approxima	ste Weight		
ins.	lent	Equiva- lent	Lbs. per ft. run	Kilos per lineal metre	Length	Remarks
Andrews Andrews Constitution of Vector City and	250 3125 375 4375 500 6625 750 875 1 000 1 250 1 750	6 · 35 7 · 94 9 · 52 11 · 11 12 · 70 14 · 29 15 · 87 19 · 05 22 · 22 25 · 40 31 · 75 38 · 10 44 · 45	960 990 134 183 240 302 372 538 729 957 1 490 2 150	·089 ·134 ·20 ·27 ·36 ·45 ·56 ·80 1·08 1·42 2·22 3·20 4·36	10—12 ft. (3·05—3·66 metres) , , , , , , , , , , , , , , , , , , ,	Rods from & in (7.94 m/m. dia, to 3 in. (76.2 m/m. dia.), car be supplied in any diameters intermediate to these if required in sufficient quantities to warrant manufacture.
2 21 21 21 21 21 3	2 · 000 2 · 250 2 · 500 2 · 750 3 · 000	50 · 80 57 · 15 63 · 50 69 · 85 76 · 20	3 · 830 4 · 850 5 · 990 7 · 2 8 · 65	5·70 7·22 8·91 10·75 12·89	8—10 ft. (2·4—3·0m) 6—8 ft. (1·8—2·4m) 4—6 ft. (1·2—1·8m)	Bars above 3 in. dia. (76:2 m/m.) are only supplied in the hammered finish.

DURALUMIN WEIGHTS—continued SQUARE RODS

Sizes	m/m.	Approx Wei	dimate ght	Length
inches	Equivalent	Lbs. per ft. run	Kilos per lineal metre	
1	12.70	-305	-45	10—12 ft.
	15.87	475	.70	(3·05—3·66 metre
å	19.05	-685	1.02	
1	22 - 22	-933	1.39	
1	25.40	1 - 220	1.82	" "
11	28.57	1 - 543	2·30 2·83	" "
11	31.75	1 · 905 2 · 23	3.28	, , , ,, , , ,
11 13 14 14	34·92 38·10	2 745	4.08	,, ,, ,,
11	38·10 41·27	3 27	4.85	8—10 ft.
	44.45	3.735	5.56	(2·44—3·05 metre
1½ 2	50.80	4.860	7.23	6—8 ft.
2 ₁	53.98	5 - 508	8 · 20	(1 ·83—2 ·44 metre

HEXAGON RODS (Whitworth Standard)

Sizes		m/m.	Appro Wei	cimate ght	Length
of bolts inches	Across Flats	Equivalent	Lbs. per ft. run	Kilos per lineal metre	
1	-525	13 - 33	-291	-43	10—12 ft.
16	-601	15 - 26	-375	56 -78	(3·05—3·66 metres)
1	.709	18.01	·521 ·708	1.05	,, ,, ,,
1	-820	20 · 83 23 · 34	-875	1.30	 Des Sillian Scharter Constitution of the Constitution
	-919 1-011	25.68	1 062	1.58	" 8—"10 ft. "
76 5	1 101	27.96	1 - 250	1.86	(2·44—3·05 metres)
ıi	1 -201	30.50	1 - 521	2 - 26	,, ,, ,,
19	1 -301	33.04	1 .791	2.67	,, ,, ,,
H	1-390	35 - 30	2.062	3.07	,, ,, ,,
7	1 -479	37 - 57	2.333	3 · 32 3 · 91	,, ,, ,,
18	1 - 574	39.98	2 · 625 2 · 916	4.34	y 13 33
	1 670	42 · 42 47 · 24	3 - 586	5.34	,, ,, ,,
1) 1) 1) 1)	1 ·860 2 ·048	52.02	4 541	6.76	,, ,, ,,
11	2.413	61.29	5.860	8 · 72	n - n - n

DURALUMIN WEIGHTS—continued EXTRUDED RECTANGULAR SECTIONS

	Thickne 4 · 7	ss 🖟 in. = 6 m/m.				ss { in. = m/m.			Thicknes	s {{ in. = m/m.	=
Wie	dth	We	ght	W	idth	We	ight	w	idth	We	ight
ins.	m/m.	per ft. run in lb.	per lineal metre in kg.	ins.	m/m.	per ft. run in lb.	per lineal metre in kg,	ins.	m/m.	per ft. run in lb.	per lineal metre in kg.
\$ 79 87 1 1½ 2 2½ 2½ 2½ 2% 3	15 · 87 20 22 25 · 4 31 · 75 38 · 10 50 · 80 63 · 50 69 · 85 73 · 02 76 · 20	.14 .18 .20 .23 .28 .34 .46 .57 .63 .65	-21 -27 -29 -34 -42 -51 -68 -85 -93 -96 1 -02	1 1 1 1 1 1 1 1 1 1 2 2 1 3 3	12 ·70 15 ·87 19 ·05 22 25 ·4 31 ·75 38 ·10 44 ·50 50 ·80 63 ·50 76 ·20	.15 .19 .23 .26 .30 .38 .45 .53 .60 .76	23 -28 -34 -39 -45 -57 -68 -79 -90 1:13 1:36	11 11 11 12 2 21 3	15 · 87 19 · 05 31 · 70 38 · 10 41 · 27 50 · 80 63 · 50 76 · 20	.24 .28 .48 .57 .62 .76 .95 1.13	-35 -42 -72 -85 -92 1-13 1-41 1-70
36	Thicknes 9 · 52				Thickness 11-11				Thickner	ss ½ in. ==) m/m.	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	12.70 14.29 15.87 19.05 25.40 28.57 31.75 38.10 50.80 63.50 66.60 69.85 76.20 88.90	23 26 28 34 46 51 57 69 91 1 14 1 20 1 25 1 37 1 60	34 39 42 51 68 76 85 1 02 1 36 1 70 1 79 1 87 2 04 2 38	21-1-2-1-2-2-3-3-3-3-3-3-3-3-3-3-3-3-3-3	12:70 15:87 19:05 63:50 69:85 76:20	.27 .33 .40 1.33 1.46 1.60	:40 :49 :60 1:98 2:18 2:38	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	16 87 19 05 22 22 25 40 31 75 38 10 41 27 50 80 60 40 63 50 69 85 76 20 85 72	38 45 53 60 76 91 99 1 22 1 45 1 52 1 67 1 82 2 05	57 68 79 90 1 13 1 36 1 47 1 81 2 16 2 26 2 49 2 72 3 05
	Thickne 15.8	ss § in. == 7 m/m.			Thicknes	s } in. = 5 m/m.				s } in. = m/m.	
34 1 1 11 11 11 12 21	7 · 63 10 · 13 19 · 05 22 · 22 25 · 40 28 · 57 31 · 75 38 · 10 44 · 45 63 · 50	-226 -30 -57 -67 -76 -85 -96 1-13 1-33 1-90	34 45 79 1 00 1 13 1 26 1 44 1 69 1 98 2 82	1 to	28.57 31.75	.94 1.05	1·40 1·56	18 1 1 18 2 2 2 1 2 2 3	20 · 60 22 · 22 25 · 40 41 · 27 50 · 80 53 · 97 63 · 50 76 · 20	.74 .80 .91 1 .47 1 .82 1 .94 2 .28 2 .74	1·10 1·19 1·36 2·19 2·72 2·89 3·40 4·07

*Round Corners.

DURALUMIN WEIGHTS—continued EXTRUDED RECTANGULAR SECTIONS

	Thicknes 22 · 22	s { in. = m/m.			Thicknes 25 · 40	s 1 in. = m/m.			Thickness 28 · 57	1 l in. = m/m.	
Wi	dth	We	ght	Wi	dth	Wei	ght	Wi	idth	Wei	ght
ins.	m/m.	in lb.		ins.	m/m.	per ft. run in lb.	per lineal metre in kg.	ins.	m/m.	per ft. run in lb.	per lineal metre in kg
11 1 1 1 1 2 2 4 2 4 4 4 4 4 4 4 4 4 4 4	14 · 29 20 · 60 31 · 75 38 · 10 47 · 62 69 · 85	-60 -87 1-33 1-60 1-99 2-92	-89 1 · 30 1 · 98 2 · 38 2 · 97 4 · 36	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	28 57 38 10 41 27 44 45 50 80 53 97 57 15 63 50 76 20	1 37 1 82 1 98 2 13 2 42 2 58 2 74 3 04 3 65	2·04 2·72 2·94 3·17 3·61 3·85 4·07 4·53 5·43	13 13 13 *21	34 · 92 44 · 45 57 · 15	1 89 2:39 3:09	2.81 3.56 4.60
		ss 1} in. 5 m m.	4-07 		Thicknes 33 · 3	s l & in. 4 m/m.			Thicknes	s 11 in. = 7 m m.	=
13 2 2 21	34 · 92 50 · 80 63 · 50	2·09 3·04 3·80	3·11 4·53 5·64	1§ *3§	41 · 27 92 · 07	2·60 5·74	3·87 8·55	21	57:15	4 - 45	6 - 62

w	ADDITIONAL S		HOUT
inches	m/m.	per ft. run in lbs.	per lineal metre in kilos
2½×·42 *1·6×·8 *2×2}	57·15×10·68 40·6×20·3 50·8×69·85	1 · 15 1 · 56 6 · 7	1·71 2·32 9·97

*Round Corners

DURALUMIN TUBES

S	WG.		D .	35	1			Á				17.00				30			41. ()		5			6			7			3		9	•
1	n/m.	8	23	2000	7	62			7.	01	8		6 ·	40			5.	89		£	3	8	4	. 8	8	4	47		4.	06	Γ	3 - (66
	Ins.	-3	24	100	.3	00			. 2	76			2	52	V		-2	32			21	2		19	2		176		-1	60		-14	44
	ternal Dia.			1000		١	۲e	igl	ıts	pe	r l	ine	al	foc	t i	n l	bs	an	ıd	per	lir	neal	mei	er	in k	ilos.							
ns	m'm.	lbs.	kgs.	11	ж.	k	gs.	11	08.	kį	zs.	11	08.	k	ga.	11	08.	kg	6.	lbs	. [[]]	kgs.	lbs		kgs.	lbs.	kg	s.	lbs.	kgs	11	08.	kgs
ł	12.70													200												1015			-21	-31		20	-3
5	15 87		2400 2000																							-30) .	15	-28		100	27	.3
1	19 -05																						-4	1	-61	-39	ا. ا	58	-36	•54		33	.4
7	22 - 22																			-5	4	.80		0	.74	-4	, .	70	44	•68		40	-6
1	25 - 40			Ž.													Ŋ,			-6	4	-95		9	-88	-51	,	32	-51	-76	17.5	47	.7
1 1	28 - 57																				3]	l -10	.6	8	l ·01	-64		95	-59	.91	١.	54	-8
ıį	31 - 75																90	1 :	34	.8	4	l ·25		8	l ·16	-7:	2 1 ()7	-67	1.00		61	.9
13	34 - 92									100						1	01	1.4	50	.9	4	l ·40		7	L ·29	-81	1 .:	21	-74	1 - 10		68	1.0
ij	38 - 10											1	20	1.	79	1.	12	1 •	67	1 0	4)	l ·55	٠.٤	6	l ·43	-89	1 :	32	-82	1 - 22		75	1 1
1 5	41 .27											1	32	1.	96	1	23	1 -8	83	1 1	4]	۰70	1 (5	l · 56	-97	11.	14	.90	1 · 34		81	1 2
13	44 - 45											1	44	2.	14	1	35	2 (01	1 · 2	5]	l ·86	1 - 1	4	L · 70	1 -01	1 - 8	58	∙97	1 · 44		88	1 3
17	47 - 62											1	56	2 .	32	1	46	2	17	1 -3	5 2	3 - 01	1 2	3	L ·83	1 - 14	1	70	1 -05	1.50		95	1 -4
2	50 -80			1	95	2	90	1	82	2 .	71	1	68	2.	50	1.	57	2 :	34	1 4	5 2	2 - 16	1 -3	3	L - 93	1 ·2:	1 -8	33	1 -12	1 - 67	1	02	1.5
2 1	53 . 97																													1 - 78			
2}	57 - 15			2	23	3 -	32	2	08	3 -	10	1	92	2 ·	86	1	79	2 (66	1 6	5 2	2 · 46	1 .5	1	2 · 25	1 -39	2 ·()7	1 ·28	1 -90	1	16	1 · 7
2 8	60 - 32			2	37	3 -	53	2	21	3 -	29	2	04	3 -	03	1	90	2 8	33	1 7	5 2	2 : 60	1 €	0	2 - 38	1 -41	2 - 2	20	1 · 35	2 01	1	23	1 8
2 <u>1</u>	62 - 50	2 69	4.00																														
	66 - 67	123-373-37	1 10 10 10	1180	1888	1937		No	75.5	12.00		173.5		1300		1188			- 25				18570			17.00	1 200			1000	1,53		
2}	69 -85	3 .00	4 :46	2	80	4 .	17	2	61	3 -	88	2	40	3 ·	57	2	23	33	.2	2 · 0	6	3 -07	1 8	8	2 · 80	1 7:	2 4	57	1 · 58	2 · 35	1	43	2 · 1
27	73 02	3 16	4.70	2	94	4	37	2	74	4	08	2	52	3 ·	75	2	34	3.,	48	2 1	6	3 ·21	1 . 9	7	2 - 93	1 .8	2.0	39	1 - 66	2 · 47	1.	50	2 · 2
	76 - 2	10000	0.0000	12676	0038	200		100		25.5		100		1080		13.5		25.55					merch.	~ I		25300	1.936	445			100	2.7	110,000

Tubes are not supplied in lengths exceeding 12 feet (3.66 metres) or 16 lbs. in weight. Intermediate sizes are supplied provided the quantities required warrant manufacture.

	,		100106-14000300-0-150-0-150-	Martin Andrews and the contract of the	second and the property of the	
	The state of the s		Duralumin	Aluminium	Brass	Copper
	1444-1-157-157-157-147-1-157-157-157	CREST TO A TOTAL OF STATE OF THE STATE OF TH	1614 ATT 25 CHANGE	Price for the September of the Control	1-10-71-71-71-71-71-71-71-71-71-71-71-71-71-	Copper
				500/3386(6245/2016)	30 2/4 (S) #5/7 Series	CONGADENTARIOS
	Specific Gravity		2.8	2.67	8.56	8.90
43	Ratio of Weights					
	1457 STATE OF STATE O	Date Propagation and Linear		-96	3.06	3 - 18

DURALUMIN TUBES—continued

	WG 1/m			10	213		100	11	7 - 5 -		2	- 1 /		2.3	-	-	2.0		1		1	6 63	1	1000	1	8 22	1	9 02	- 2)	-
1000	i/m ins.	44	7017	12			-	11				04		-09	1541	-	-01			72		64		56		48		40		36
	ern	_	528 75			1				1		NA S											300							
124.75	ia.									1			79 F	Swill.		1		1	100	1.00		mete								
ns.	m/	m.	lb	5.	kg	5.	1bs	.	кg	8.	lbs.	kε	8.	ibs.	kgs	. Lb	9.	kgs.	lbs.	kgs.	Ibs.	kgs.	lbs.	kgs.	lbs.	kgs,	ibs.	Kgs.	IDS.	Kg:
ł	12	70	17	18	•2	7		7		25	-16		24	-14	•2	1 .	13	-19	12	-18	-10	-16	-09	·14	-08	-12	-07	-10	-06	.05
8	15	87		24		16		23		34	-21		31	-19	.2	8	17	-25	15	-23	-14	-21	12	-18	·10	-16	.09	·13	.08	-12
1	19	05		30	•4	15		28		12	-26		40	-23	•3	5	20	-31	19	.28	17	-25	-15	-22	·13	-19	-11	·16	-10	-14
7	22	22	•	37		55	Y	34		51	-31		46	•28	•4	2	24	•37	-22	-33	-20	-30	-17	-26	-15	-23	-13	-19	11	•17
1	25	40	8	43	• (34		10		30	-36		54	-32	-4	8 -	28	•43	26	-39	•23	-35	-20	•31	-17	•26	-15	.22	·13	-11
11	28	57		50		74		15		37	41		61	-37	•5	5	32	•48	-29	-44	-26	.39	·23	-35	-20	•30	-16	-25	-15	2
1}	31	-75		56	. 1	33		51		76	46		68	-41	-6	1	36	•54	•33	•49	-29	•44	-26	-39	-22	-33	-18	-28	17	-2
13	34	.92		62	. :	92		56		83	-51		76	45	- 6	8 .	40	-60	-36	•54	-32	-49	-28	•43	-24	-37	-20	•30	18	-26
11	38	-10		68	1 ()1		62		92	-56		83	-50	.7	5	43	-64	-40	-60	-35	-53	-31	-47	-27	•40	-22	-33	-20	-29
1§	41	27		74	1	ιo		68	1 •	01	-61		91	-54	-8	0	48	.71	43	-64	-38	-58	-34	-51	.29	.43	24	•36	-22	.3
13	44	.45	33	80	1 ·	19		74	1 •	10	-66		98	-59	-8	8	52	-77	47	•70	-42	-62	-36	•54	.31	•46	-26	-39	-24	•3
17	47	-62		86	1 •	28		80	1.	19	71	1	06	-62	-9	3	55	-83	-50	78	-45	-67	-39	•58	-33	-49	-28	.42		
2	50	80	35	93	1	38		84	1 •	25	· 76	1	13	-68	1 -0	1	59	-89	-54	-80	-48	.71	-42	-62	-36	.54				
21	53	•97		99	1	17		90	ı٠	34	∙81	1	21	.72	1.0	8	63	-94	57	-88	-51	.76	-44	-65	-38	-57				
2 <u>1</u>	57	15	1	05	1 .	56		96	ı.	43	-86	1	28	.77	1 · 1	5	67	1 •00	·61	-91	-54	-81	-47	•70	:40	•60				
23	60	-32	1	12	1 •	67	1	02	1 :	52	-91	1	35	-81	1 -2	22	71	1 -06	-64	-96	-57	-85	-50	-74	-43	•64				
2 <u>1</u>	62	-50	1	18	1 •	76	1	07	1 •	59	-96	1	•43	-86	1 • 2	29	75	1 · 12	-68	1.0	-60	•90								
2§	66	•67	1	24	1 ·	85	1	13	1.	68	1 -02	1	-52	-90	1 :	35	79	1 - 18	-71	1 -06	- 63	-95				12.50				
23	69	-85	1	30	1 ·	93	1	19	1.	77	1 -07	1	-59	-95	1 •	11	83	1 -24	73	1 - 10	-66	-99								
27	73	02	1	37	2 ·	04	1	26	1 -	87	1 12	2 1	-67	-99	1 -	18	86	1 - 29	-78	1 · 1'	- 69	1 -04	2 A S							
3	76	-20	1	43	2	13	1	30	1	93	1 1	rh	74	1 04	1	55	90	1 - 35	-81	1 .25	2 .73	1.09	H.						13	

Tubes are not supplied in lengths exceeding 12 feet (3.66 metres) or 16 lbs. in weight. Intermediate sizes are supplied provided the quantities required warrant manufacture.

		Duralumin	Aluminium	Brass	Copper
S _j R	pecific Gravity atio of Weights	2·8 1	2 · 67 · 96	8 · 56 3 · 06	8 90 3 18

DURALUMIN WEIGHTS—continued SHEET

'hick	Dec.	Millimetre -	We	ight .									
ness SWG.	Equiva- lent	Equiva- lent	Per sq. ft. in lbs.	Per sq. m. in kg.					Siz	в			
0	-324	8 - 23	4 · 730	23 · 10	3′		(-91	metres) ×	2′	(-61	metres)	max.
1	-300	7 62	4 - 328	21 - 13	3'		(∵-91		×		(.61		
2	-276	7.01	4 030	19.68	3'	6"	(1-07		ĺχ	2'	(.61		,,
3	252	6.40	3 - 680	17.97	3′	6"	(1.07)		×	2'	(-61	,,)	
4	232	5.89	3 - 380	16.50	4'		(1.22)) ×	2′	(.61)	
5	212	5.38	3.096	15.11	4'	6"	(1.37)) ×		(.61)	10 N
6	192	4.88	2 · 800	13 67	5′		(1.53)) ×	2'	(61	.,)	angere.
7	-176	4.47	2 570	12.55		6"	(1.68)) ×	2'	(.61	,,)	
8	160	4.06	2 · 330	11 - 38	6'		(1.83)) ×	2'	(-61	.)	
9	·144	3.66	2 103	10.26	6'		(1.83)) ×	2′	(.61	.,)	
10	.128	3.25	1 ·860	9.08	6'		(1.83)	,,) ×	2′	(.61	· ,)	
11	.116	2.95	1 694	8 · 27	6'		(1.83)) ×	2′	(-61	· (
12	.104	2.64	1 · 510	7-37	6′		(1.83)	97) X	2′	(.61	.,)	100
13	092	2.34	1 :343	6 - 55	6′		(1 83) ×	2′	(.61	.,)	,,
14	-080	2 03	1 - 160	5.66	6′		(1.83)) ×	2'	(61	,,)	,,
15	.072	1 83	1 .051	5 13	6′		(1.83)	,,,) X	2′	(.61	.,)	
16	-064	1.63	·934	4.56	6′		(1.83)	**	X	2′	(.61	,,)	1000
17	-056	1 42	-817	3.99	6′		(1.83)	.,	×	2′	(.61	.,,)	
18	-048	1 22	.700	3.42	6′		1.83	3.7	X	2'	(.61	.,)	
19	-040	1.02	-584	2.85	6′		1.83		×	2′	(.61	,,)	.,,
20	-036	-914	-525	2.56	6′		1.83		×	2′	(.61	,,)	,,,
21	.032	-813	-467	2.28	6′		1.83		×	2′	(.61	• • • • • • • • • • • • • • • • • • • •	0.00
22	-028	-711	-408	1 .99	6′		1 83	.,)	X	2′	1.61	.,)	
23	-024	-610	:350	1.70	6'		1.83		X	2′	(.61	.,)	,,,
24	-022	-559	-321	1 - 57	6′		1 .83	,,	X	2′	(.61	.,)	140 🕶
25	-020	-508	.292	1.42	6′		1 83		X	2′	(-61	.,)	99
26	-018	457	-263	1.28	6′		1.83				(46	.,)	•
27	.016	.4164	239	1.16	6′		1.83	22.71	I X		(.38	.,)	
28	.014	-3768	:216	1.05	6′		1.83	,,]			(30)	**
29 30	-013	-3456	-198	-96	6′		1.83	. , ,			(.30	.,)	
JU	.012	-3154	-181	-88	6′	384	1.83	,,	X	12"	(.30	.,)	

English — Metric Metric — English

CONVERSION TABLES

INDEX

Millimetres into Inches									Pages 162 to 164
Feet into Metres									165 to 167
Metres into Feet									167
Miles into Kilometres							·		168
Kilometres into Miles									169
Knots into Kilometres p	er hou	ı r							170
Feet per minute into Me	etres pe	er secor	ıd		•				170
Metres per second into	Feet pe	er minu	te						171
Square Feet into Square	Metre	S.	•				••		172
Square Metres into Squ									173
Gallons into Litres									174
Litres into Gallons									175
Pounds into Kilogramn	ies							••	175 to 178
Kilogrammes into Pour	ds								179 to 180
Pounds per Square Foo	t into l	Kilogra	mmes	per Sq	uare M	[etre		••	180
Kilogrammes per Squar	e Metr	e into l	Pound	s per S	quare	Foot			181
Tons per Square Inch i	ato Kil	ogramı	nes pe	r Squa	re Mill	imetre			181, 182
Kilogrammes per Squar	e Milli	metre i	nto T	ons per	Squar	e Inch			182
Comparison of Centigra	de and	Fahre	nheit '	Thermo	meter	3			183, 184

Equivalent Values of Millimetres and Inches

and Fractions of Inches (:00001 in. — :000254 mm.)

mm.	Inches	mm.	Inches	mm.	Inches
	Dec. Fr.		Dec. Fr.		Dec. Fr
-1 -2 -3 -397 -4 -5	.00394 .00787 .01181 .015625 — 12 .01575 .01968 .02362	4·1 4·2 4·3 4·366 4·4 4·5	-16141 -16535 -16929 -171875 11 -17322 -17716 -18110	8·1 8·2 8·3 8·334 8·4 8·5	31889 32283 32677 328125 — \$1 33070 33464
.7 .794 .8 .9 1.0	-02756 -03125 — ½ -03149 -03543 -03937	4.7 4.763 4.8 4.9 5.0	18503 -18750 — 18 -18897 -19291 -19685	8·7 8·731 8·8 8·9 9·0	-33858 -34251 -34375 — 11 -34645 -35039 -35433
1:1 1:191 1:2 1:3 1:4 1:5	.0433 .046875 — 4 .04724 .05118 .05512 .05905	5·1 5·159 5·2 5·3 5·4 5·5	-20078 -203125 — H -20472 -20866 -21259	9·1 9·128 9·2 9·3 9·4	-35826 -359375 — 33 -36220 -36614 -37007
1.587 1.6 1.7 1.8 1.9	06250 — 18 06299 06693 07086 07480	5.556 5.6 5.7 5.8 5.9	.21653 .21875 — 32 .22047 .22440 .22834 .23228	9.5 9.525 9.6 9.7 9.8 9.9	-37401 -37500 — § -37795 -38188 -38582 -38976
1.984 2.0	.078125 — 54 .07874	5·953 6·0	·234375 — 14 ·23622	9 · 922 10 · 0	·390625 — # ·39370
2·1 2·2 2·3 2·381 2·4 2·5 2·6	-08267 -08661 -09055 -09375 — 32 -09449 -09842 -10236	6·1 6·2 6·3 6·35 6·4 6·5	.24015 .24409 .24803 .25000 — 1 .25196 .25590	10 · 1 10 · 2 10 · 3 10 · 319 10 · 4 10 · 5	39763 -40157 -40551 -40625 — 13 -40944 -41338
2.6 2.7 2.778 2.8 2.9 3.0	.10236 .10630 .109375 — 4 .11023 .11417 .11811	6.6 6.7 6.747 6.8 6.9 7.0	25984 26377 265625 #{\frac{1}{2}} -26771 27165 27559	10.6 10.7 10.716 10.8 10.9 11.0	41732 -42125 -421875 — 程 -42519 -42913 -43307
3·1 3·175 3·2 3·3 3·4 3·5	-12204 -12500 — ‡ -12598 -12992 -13385 -13779	7·1 7·144 7·2 7·3 7·4 7·5	.27952 .28125 — 32 .28346 .28740 .29133 .29527	11 · 1 11 · 113 11 · 2 11 · 3 11 · 4 11 · 5	-43700 -43750 — 76 -44094 -44488 -44881 -45275
3.572 3.6 3.7 3.8 3.9 3.969	140625 — & .14173 — .14566 — .14560 — .15354 — .15025 — .5	7.541 7.6 7.7 7.8 7.9 7.938	-296875 — 32 -29921 -30314 -30708 -31102	11.51 11.6 11.7 11.8. 11.9	·453125 — 器 ·45669 ·46062 ·46456 ·46850
4.0	·15625 — 32 ·15748	8.0	·31250 — 5 ·31496	11 · 906 12 · 0	·46875 — 15 ·47244

Equivalent Values of Millimetres and Inches-continued

and Fractions of Inches (.00001 in. -. 000254 mm.)

mm.	Inches		mm.	Inches		mm.	Inche	8
	Dec.	Fr.		Dec.	Fr.		Dec.	F
12·1 12·2 12·3 12·303	·47637 ·48031 ·48425 ·484375 –	- 81	16·1 16·2 16·272 16·3	·63386 ·63779 ·640625 -	- 11	20·1 20·2 20·241 20·3	·79133 ·79527 ·796875 – ·79921	- 81
12 · 4 12 · 5 12 · 6	·48818 ·49212 ·49606		16·4 16·5 16·6	-64566 -64960 -65354		20 · 4 20 · 5 20 · 6	-80314 -80708 -81102	
12·7 12·8	·49999 ·50000 - ·50393	- 1	16.669 16.7 16.8	-65625 - -65747 -66141	- 31	20 · 638 20 · 7 20 · 8	-81250 - -81495 -81889	- 18
12·9 13·0	-50787 -51181		16·9 17·0	-66535 -66929		20·9 21·0	-82283 -82677	
13 ·097 13 ·1	·515625 - ·51574	- 11	17.066 17.1	-67322	- ii	21 · 035 21 · 1	·828125 - ·83070	- 62
13 · 2 13 · 3 13 · 4	-51968 -52362 -52755		17·2 17·3 17·4	-67716 -68110 -68503		21 · 2 21 · 3 21 · 4	·83464 ·83858 ·84251	
13 · 494 13 · 5	·53125 - ·53149	- 12	17 · 463 17 · 5	-68750 - -68897	- 11	21 ·432 21 ·5	·84375 - ·84645	- 33
13 · 6 13 · 7 13 · 8	·53543 ·53936 ·54330		17·6 17·7 17·8	-69291 -69684 -70078		21 · 6 21 · 7 21 · 8	-85039 -85432 -85826	
13 · 891 13 · 9 14 · 0	-546875 - -54724 -55118	- 11	17·860 17·9 18·0	·703125 - ·70472 ·70866	- 11	21 ·828 21 ·9 22 ·0	·859375 - ·86220 ·86614	- 11
14·1 14·2	·55511 ·55905		18·1 18·2	-71259 -71653		22·1 22·2	-87007 -87401	
14 · 288 14 · 3 14 · 4	-56250 - -56299 -56692	- 18	18·256 18·3 18·4	·71875 ·72047 ·72440	- 33	22 · 225 22 · 3 22 · 4	-87500 - -87795 -88188	- 1
14·5 14·6	-57086 -57480		18·5 18·6	·72834 ·73228		22 - 5 22 - 6	-88582 -88976	
14 ·684 14 ·7 14 ·8	-578125 - -57873 -58267	- 87	18 · 653 18 · 7 18 · 8	·734375 - ·73621 ·74015	- #	22 · 622 22 · 7 22 · 8	-890625 - -89369 -89763	- 11
14·9 15·0	-58661 -59055	30.20	18·9 19·0	·74409 ·74803		22 · 9 23 · 0	-90157 -90551	
15 ·081 15 · 1	-59375 - -59448	- 38	19·050 19·1	-75000 - -75196	- 1	23·019 23·1	·90625 ·90944	- 31
15 · 2 15 · 3 15 · 4	-59842 -60236 -60630		19·2 19·3 19·4	·75590 ·75984 ·76377		23·2 23·3 23·4	·91338 ·91732 ·92125	
15·478 15·5 15·6	-609375 - -61023 -61417	- 31	19·447 19·5 19·6	-765625 - -76771 -77165	- 11	23 · 416 23 · 5 23 · 6	-921875 - -92519	- 81
15·7 15·8	-61811 -62204		19·7 19·8	-77558 -77952		23 · 7 23 · 8	·92913 ·93306 ·93700	
15 · 875 15 · 9 16 · 0	-62500 - -62598 -62992	- 8	19·844 19·9 20·0	·78125 - ·78346 ·78740	- 32	23 · 813 23 · 9 24 · 0	-93750 - -94094 -94488	- 18

Equivalent Values of Millimetres and Inches—continued

and Fractions of Inches (.00001 in. -.000254 mm.)

mm.	Inches		mm.	Inche	8	mm.	Inches	
	Dec.	Fr.		Dec.	Fr.		Dec.	F
24 : 1	-94881		25.004	984375	- 81	31 751	1 -25000	- 1
24 · 2 24 · 210	·95275 ·953125 -	- 21	25·1 25·2	-98818 -99212		35 · 0 38 · 101	1.37795	- 1
24 · 3	-95669	• • •	25.3	-99606		40.0	1.57480	
24 4	.96062		25.4	-99999		44 · 451	1.75000	— l
$24.5 \\ 24.6$	·96456 ·96850		25 · 401 25 · 5	1.00000	T 1	45·0 50·0	1 · 77165 1 · 96850	
24-607	-96875 -	- 31				50 - 801	2.00000	-
24·7 24·8	·97243 ·97637					1000000000		Sirror
24.9	·98031 ·98425		26.0	1 00000		55.0	0 10505	
25.0	.98429		20·0 27·0	1 -02362		60.0	2 · 16535 2 · 36220	
经验的证		16657	28.0	1.10236		70.0	2.75590	
			29.0	1 · 14173		76 201	3 00000	-
	ALAMENT.		30.0	1.18110		80·0 90·0	3 · 14961 3 · 54331	
						100.0	3.93701	
						101 · 601	4.00000	'

BRITISH AND METRIC MEASUREMENTS

Feet into metres.

Feet	Metres	Feet	Metres	Feet	Metres	Feet	Metres	Feet	Metre
1	0.305	46	14.021	91	27 - 736	136	41 - 452	181	55 · 16
2	0.610	47	14 326	92	28 041	137	41 756	189	55 47
3	0.914	48	14 630	93	28 346	138	42.061	182 183	55 . 77
4	1.219	49	14.935	94	28 650	139	42.366	184	56.08
5	1.524	50	15.240	95	28 - 955	140	42 671	185	56.38
6	1 · 829	51	15.544	96	29 - 260	141	42.976	186	56 - 69
7	2 134	52	15.849	97	29 - 565	142	43.280	187	56 . 99
8	2.438	53	16 - 154	98	29 - 869	142 143	43 · 280 43 · 585	188	57 30
9	2.743	54	16 - 459	99	30 174	144	43 890	189	57 - 60
10	3.048	55	16.763	100	30 - 479	145	44.195	190	57 · 91
11	3 .353	56	17 · 068 17 · 373	101	30 - 784	146	44 - 499	191	58 - 21
12	3 - 657	57	17 373	102	31 -089	147 148	44.804	192	58 - 52
13	3.962	58	17.678	103	31 - 393	148	45.109	193	58 - 82
14	4 . 267	59	17 - 983	104	31 - 698	149	45 414	194	59 - 13
15	4 · 572	60	18 · 287	105	32 -003	150	45.719	195	59 · 43
16	4.877	61	18 - 592	106	32 - 308	151 152 153	46.024	196	59 - 73
17	5 · 182	62	18 - 897	107	32 - 613	152	46.328	197	60 - 04
18	5 · 486	63	19 202	108	32 917	153	46.683	198	60 - 34
19	5 · 791	64	19 - 507	109	33 - 222	154	46 938	199	60 - 65
20	6.096	65	19 811	110	33 - 528	155	47 243	200	60 - 95
21	6 - 401	66	20 · 116	111	- 33 -832	156	47.852	201	60 - 20
22	6.705	67	20 · 421	112	34 · 137	157	47 - 548	202	61 - 56
23	7.010	68	20 - 726	113	34 441	158	48 157	203	61 · 87 62 · 17
24	7 : 315	69	21.030	114	34 746	159	48 - 462	204	62 · 17
25	7 - 620	, 70	21 -335	115	35 - 051	160	48-767	205	62 - 48
26	7.925	71 72	21 .640	116	35 · 356	161	49.072	206	62 . 78
27 /	8 · 229	72	21 - 945	117 118	35 - 661	162	49.376	207	63.09
28	8.534	73	22 - 249	118	35 - 965	163	49 681	208	63 - 39
29	8.839	74	22 - 554	119	36 - 279	164	49 986	209	63 - 70
30	9-144	75	22 -859	120	36 - 575	165	50 291	210	64 00
31 32	9·449 9·753	76	23 - 164	121	36.880	166	50 - 595	211	64 - 31
33	10.058	77 78	23 · 469 23 · 774	122	37 · 185 37 · 489	167	50 900	212	64 - 61
	10.058	78 79	24 078	123 124		168	51 205	213	64 . 92
34 35	10.668	80	24.078	124	37 · 794 38 · 099	169 170	51 ·510 51 ·815	214 215	65 · 22 65 · 53
36	10.973	81	21-688	196	38 · 404	171	52 - 119	216	65 83
37	11.278	82	24.993	126 127	38.709	177	52 424	210	66 14
38	11.582	83	25.298	128	39.013	172 173	52.729	218	66 44
39	11.887	84	25 - 602	129	39.318	174	53.034	219	66 . 75
40	12.192	85	25 907	130	39 - 623	175	53.339	220	67 - 05
41	12 497	86	26 - 212	131	39 - 928	176	53 - 643	221	67 - 35
42	12 802	87	26.517	132	40 .233	177	53 948	222	67 66
43	13 106	88	26 · 517 26 · 822	133	40.537	178	54 253	222 223	67 . 96
44	13 411	89	27 - 126	134	40 -842	179	54.558	224	68 27
45	13.716	90	27 431	135	41.147	180	54 863	225	68 - 57

Feet into metres—continued

l'eet	Metres	Feet	Metres	Feet	Metres	Feet .	Metres	Feet	Metres
226	68 - 883	276	84 - 123	326	99 - 363	376	114-602	426	129 841
227	69 - 188	277	84 - 428	327	99 - 667	377	114 - 907	427	130 - 145
228	69 - 493	278	84 - 732	328	99 - 972	378	115 - 212	428	130 - 450
229	69 - 798	279	85.037	329	100 -277	379	115 - 517	429	130 755
230	70 - 102	280	85.342	330	100 - 582	380	115.821	430	131 -060
231	70 -407	281	85 - 647	331	100 -887	381	116 - 126	431	131 - 364
232	70.712	282	85 - 952	332	101 - 191	382	116 · 431	432	131 669
233	71 017	283	86 - 256	333	101 -496	383	116.736	433	131 - 974
234	71 -321	284	86 - 561	334	101 -801	384	117.041	434	132 - 279
235	71 - 626	285	86.866	335	102 - 106	385	117:345	435	132 - 58
236	71 - 931	286	87 - 171	336	102 -410	386	117.650	436	132 -888
237	72 - 236	287	87 - 476	337	102 -715	387	117.955	437	133 - 193
238	72.541	288	87 - 780	338	103 - 020	388	118 - 260	438	133 -498
239	72 - 845	289	88.085	339	103 - 325	389	118.565	439	133 -803
240	73 · 150	290	88.390	340	103 - 630	390	118.869	440	134 · 10
241	73 - 455	291	88 - 695	341	103 - 934	391	119 - 174	441	134 - 415
242	73 - 760	292	89.000	342	104 - 239	392	119 479	442	134.71
243	74.065	293	89 - 304	243	104 - 544	393	119 - 784	443 444	135 :025
244 245	74 · 369 74 · 674	294 295	89 · 609 89 · 914	344 345	104 · 849 105 · 154	394 395	120 · 089 120 · 393	445	135 · 32 135 · 63
4.0		200	00 010	0.0	105 450	900	100 000	440	105 00
246	74 979	296 297	90·218 90·523	346 347	105 · 458 105 · 763	396 397	120 · 698 121 · 003	446 447	135 · 93 136 · 24
247 248	75 · 284 75 · 589	298	90.828	348	106.068	398	121.003	448	136.54
249	75 893	299	91 - 133	349	106.373	399	121 -613	449	136 -85
250	76 - 198	300	91 .437	350	106 - 678	400	121 - 917	450	137 - 15
251	76-503	301	91 - 742	351	106 - 982	401	122 - 222	451	137 - 46
252	76.808	302	92.047	352	107 - 287	402	122 - 527	452	137 - 76
253	77.113	303	92 - 352	353	107 - 592	403	122 - 832	453	138 - 07
254	77 -417	304	92 - 657	354	107 -897	404	123 - 136	454	138 - 37
255	77 - 722	305	92.962	355	108 - 202	405	123 · 441	455	138 - 67
256	78 027	306	93 - 267	356	108 - 506	406	123 - 746	456	138 - 98
257	78 - 332	307	93 - 571	357	108-811	407	124 .050	457	139 - 28
258	78 : 637	308	93 · 876	358	109 - 116	408	124 - 354	458	139 - 59
259	78 941	309	94 · 181	359	109 - 421	409	124 - 659	459	139 - 89
260	79 - 246	310	94 · 486	360	109 - 726	410	124 - 964	460	140 - 20
261	79 551	311	94 - 790	361	110 -030	411	125 - 269	461	140 - 50
262	79 -856	312	95.095	362	110.335	412	125 - 573	462	140 - 81
263	80 161	313	95 • 400	363	110 - 640	413	125 - 878	463	141 - 11
264 265	80 · 465 80 · 770	314 315	95·705 96·010	364 365	110 ·945 111 ·250	414 415	126 · 183 126 · 488	464 465	141 · 42 141 · 72
266 267	81 · 075 81 · 380	316 317	96·315 96·619	366 367	111 · 554 111 · 859	416 417	126 - 793 127 - 097	466 467	142 · 03 142 · 33
268	81 - 684	318	96.924	368	112 · 164	418	127.402	468	142 64
269	81 -989	319	97 - 229	369	112 -469	419	127 - 707	469	142.94
270	82 - 294	320	97.534	370	112 .773	420	128 012	470	143 - 25
271	82 - 599	321	97 - 839	371	113-078	421	128 - 317	471	143 - 55
272	82 904	322	98 - 143	372	113 383	422	128 621	472	143 - 86
273	83 208	323	98 - 448	373	113 - 688	423	128 - 926	473	144 - 16
274	83 - 513	324	98 - 753	374	113.993	424	129 - 231	474	144 - 47
275	83 - 818	325	99-058	375	114-297	425	129 - 536	475	144 - 77

Feet into metres—continued

Feet	Metres	Feet	Metres	Feet	Metres	Feet	Metres	Feet	Metres
476	145 . 082	1500	457 - 188	7500	2285 - 940	13000	3962 : 296	19000	5791 -046
477	145 387	2000	609 - 584			13500	4114 - 692	19500	5943 442
478	145 - 691	2500	761 - 980	8000	2438 - 336	14000	4267 .088	20000	6095 -836
479	145 - 996	140000		8500		14500	4359 484		
480	-146 - 301	3000 3500	914 · 376 1066 · 772	9000	2590 · 732 2743 · 128	15000	4571 -880	20500	
490	149 - 349	4000	1219 - 168	9500	2895 - 424	15500	4724 - 276	21000	6400 628
500	152 - 396	4500	1371 - 564	10000	3047 - 92	16000	4876 - 652	21500	6552 924
600	182 - 875	5000	1523 - 960	1000		16500	5029 048	22000	6705 420
700	213 - 354	10000		10500	3200 - 316	17000	5181 044	22500	6857 816
800	243 -834	5500	1676 - 356	11000	3352 - 712	17500	5333 836		
000		6000	1828 - 752	11500	3505 - 108	1.000	0000	23000	7010 - 212
900	274 - 313	6500	1981 -148	12000	3657 - 504	18000	5486 - 256	23500	7162 608
1000	304 - 792	7000	2133.544	12500	3809 900	18500	5638 -652	24000	7315 004

Metres into Feet.

Metres	Feet .	Metres	Feet	Metres	Feet	Metres	Feet	Metres	Feet
1	3 - 2808	26	85 - 30	51	167.32	76	249 - 34	200	656 - 17
2	6 - 562	27	88 - 59	52	170.60	77	252 - 62	300	984 . 25
3	9.842	28	91 - 87	53	173 -88	78	255 -90	400	1312 - 34
4	13.123	29	95 - 15	54	177 - 16	79	259 18	500	1640 42
4 5	16 - 404	30	98 - 42	55	180 ·45	. 80	262 - 47	600	1968 - 50
6	19-685	31	101 - 70	56	183 -72	81	265 - 74	700	2296 - 59
7	22.966	32	104 - 98	57	187 00	82	269.02	800	2624 67
8	26 - 247	33	108 - 27	58	190 - 29	83	272 - 30	900	2952 - 76
9	29.527	34	111 - 55	59	193.57	84	275 - 59	1000	3280 84
10	32 - 81	35	114.83	60	196-85	85	278 - 87	1500	4921 - 26
11	36-09	36	118-11	61	200 - 13	86	282 - 15	2000	6561 - 68
12	39-37	37	121 · 39	62	203 - 41	87	285 43	2500	8202 10
13	42.65	38	124 - 67	63	206 - 69	88	288 · 71	3000	9842 - 52
14	45.93	39	127 - 95	64	209 - 97	89	291 -99	3500	11482.94
15	49-21	40	131 - 23	65	213 - 25	90	295 - 27	4000	13123 - 36
16	52 - 49	41	134 · 51	66	216.53	91	298 - 55	4500	14763 - 78
17	55.77	42	137 - 79	67	219 - 81	92	301 ·83	5000	16404 .21
18	59.05	43	141 .07	68	223.09	93	305 - 11	5500	$18044 \cdot 62$
19	62 - 33	44	144 .35	69	226 · 37	94	308 - 39	6000	19685 .05
20	65 • 62	45	147 · 64	70	229 - 66	95	311 - 67	6500	21325 - 47
21	68.9	46	150 - 92	71	232 . 94	96	314 - 95	7000	22965 - 90
22	72 · 18	47	154 - 20	72	236 · 22	97	318 -23	7500	24606 32
23	75 · 46	48	157 - 48	73	239 · 49	98	321 - 51	8000	26246 - 74
24	78.74	49	160 - 76	74	242.78	99	324 - 79	8500	27887 - 17
25	82 - 02	50	164 · 04	75	246.06	100	328 - 084		

Miles into Kilometres.

Miles	Kilos.	Miles	Kilos.	Miles	Kilos.	Miles	Kilos.	Miles	Kilos.
1	1.609	39	62.76	77	123 - 913	116	186 - 676	153	246 - 17
2	3.219	40	64.37	78	125 522	117	188 - 285	154	247.79
3	4.828		Ald Seeding	79	127 - 131	118	189 894	155	249 - 34
4	6.437	41	65 - 98	80	128.74	119	191 - 503	48050	
5	8.047	42	67 - 59		2012/04/2015	120	193 - 11	156	251 -00
	0.02	43	69 - 197	81	130 - 36	Hillogan E. S.	Part Partie	157	252 - 61
6	9.655	44	70.811	82	131 - 96			158	254 22
7	11.265	45	72 415	83	133 - 57	121	194.72	159	255 -83
8	12 874	S. 10 4. 10 4.	12.410	84	135 - 18	122	196.33	160	257 - 439
9	14 484	46	74.024	85	136 - 79	123	197.94	100	201.43
		47	75 - 633			124	199.55	161	259 -048
□10	16:09	48	77 242	86	138 40	125	201 · 16	162	260 65
		49	78 851	87	140 01			163	262 26
11	17.69	50	80.464	88	141 62	126	202 - 77	164	263 - 876
12	19.312	00	90.404	89	143 - 23	127	204 38	165	
13	20 .92	51	82 077	90	144 -83	128	205 - 99	100	265 · 486
14	22 .53	52	83.686		^-73 00	129	207 - 596	166	267 . 08
15	24 · 140	53	85 - 291	91	146 44	130	209 - 207	167	268 - 70
		54	86.901	92	148.05			168	270 -31
16	25.75			93	149.66	131	210 -816	169	
17	27.36	55	88-510	94	151 -27	132	212 425		271 .92
18	28 . 97	56	90 - 120	95	152 89	133	214 034	170	273 - 532
19	30 - 57	57	91.729		102.00	134	215 643	Authorities	
20	32.19	58	93.34	96	154.50	135	217.25	171	275 -14
94.80	AND STATE	59	94.95	97	156-11	199	211.20	172	276 .75
21 22	33.79			98	157.72		010 00	173	278 -460
22	35 40	60	98 - 55	99	159 33	136	218-86	174	279 969
23	37.01	61	98 - 166	100	160 - 92	137	220 47	175	281 - 579
24	38 - 62	62	99.765	100	100.32	138	222 07		1200000
25	40.233	63	101 374	101	162 - 53	139	223 - 75	176	283 - 17
	Line Score and a	64	101 - 374	102	164 - 14	140	225 - 30	177	284 - 79
26	41.83	65	104 602	103	165 - 75		1.000	178	286 -406
27	43.44	05	104.002	104	167-37	141	226 - 91	179	288 -016
28	45.05	66	106 211	105	168 974	142	228 - 62	180	289 -628
29	46.66	67	107 -812	100	100 874	143	230 - 23		
30	48 28	68	109-421	106	170 - 583	144	231 .84	181	291 -234
	70 20	69	111.041	107	172 - 192	145	233 45	182	292 -844
31	49 879	70	111.041	108	173 -801			183	294 .453
32	51.488		117.00	109	175.41	146	235 .05	184	296 -062
33	53 - 108	71	114 - 26	110	177 02	147	236 - 66	185	297 - 672
34	54.71	72	115 87			148	238 - 27		2005030
3 1 35	56.33	73	117.48	111	178 - 63	149	239 - 88	186	299 - 270
90	90.99	73 74	117.48	112	180 - 24	150	241 35	187	300 -890
36	57.94	75		113	181 -85	Section 1		188	302 499
37	59.55	75	120 - 675	114	183 -456	151	242 - 96	189	304 109
38	61.15	76	122 304	115	185 -067	152	244.57	190	305.718

Kilometres into Miles

Kilos.	Miles	Kilos. Miles		Kilos.	Kilos. Miles		Kilos. Miles		Kilos. Miles		
1	0.621504	11	6 - 8365	21	13 -051	31	19 - 266	41	25 - 481		
2	1 -243008	12	7 · 4581	22	13.673	32	19.888	42	26 103		
3	1.864512	13	8 - 0796	23	14 · 294	33	20.509	43	26.724		
4	2.486016	14	8.7012	24	14 · 916	34	21 · 131	44	27 - 346		
5	3 · 107520	15	9 - 3227	25	15 - 537	35	21 · 752	45	27.967		
6	3 - 729024	16	9.9442	26	16 - 159	36	22 - 374	46	28 - 589		
7	4.350528	17	10.5658	27	16.780	37	22 - 995	47	29 - 210		
8	4 . 972032	18	11 - 1873	28	17 - 402	38	23 - 617	48	29 - 832		
9	5 - 593536	19	11.8089	29	18.023	39	24.238	49	30 - 453		
10	6.2150	20	12.43	30	18.645	40	24 .86	50	31 -075		

Kilometres into miles—continued

Kilos.	Miles	Kilos.	Miles	Kilos.	Miles	Kilos.	Miles	Kilos.	Miles
51	31 - 696	101	62 - 772	151	93 - 846	201	124 - 922	251	155 - 997
52	32 - 318	102	63 - 393	152	94 ·468 95 ·089	202	125 · 544 126 · 165	252	156 -618
53	32 .939	103	64 - 015	153	95.080	203	128.165	253	157 - 240
54	33 - 561	104	C4 000	754	95.711	204	126 - 787	254	157 -862
			04.000	155	96 332	205	127 408	255	158 -483
55	34.192	105		1 1 1 1 1 1 1 1 1 1 1	90.332	200	127.405	200	100.400
56	34 . 804	106	65-879	156	96 - 954	206	128.030	256	159 - 100
57	35 - 425	107	66 - 501	157	97 - 575	207	128 - 651	257	159 726
58	36 -047	108	67 - 122	158	98 197	208	129 - 273	258	160 - 347
59	36-668	109	67 - 744	159	98 818	209	129 894	259	160 - 968
60	37 - 290	105 107 108 109 110	68 - 365	156 157 158 159 160	99 - 440	210	129 · 273 129 · 894 130 · 516	260	161 - 590
61	37 - 911	111			100 -061	211	131 - 137	261	162 - 212
62	38 - 533	111 112	60 600	102	100 -683	212	131 -759	262	162 833
	30.033	112	09.008	102	100.009	212	191.199	263	102 000
63	39 - 155	113	70 -229	163	101 · 304 101 · 926	213	132 · 380 133 · 002	203	163 · 455
64	39 - 776	114	70 -851	164	101 - 926	214	133.002	264	104.077
65	40 - 397	112 113 114 115	68:986 69:608 70:229 70:851 71:472	165	102 - 547	215	133 - 623	265	164 - 698
66		116 117 118 119	72 .094	166 167 168 169 170	103 · 169	216	134 - 245	266	165 - 320
67	41 - 640	117	72 - 715	167	103 - 790	217	134 867	267	165 -941
68	42 - 262	118	73 -237	168	104 - 412	218	135 - 488	268	166 - 562
69	42 - 883	110	73 - 958	360	104 ·412 105 ·033	219	135 · 488 136 · 109	269	167-183
70	43.505	120	74.58	170	105 -655	220	136 - 731	270	167 -805
71	44 - 126	1	75 - 201		106 · 276 106 · 898	001	300 000	271	168 -427
72	44.748	121	75 - 822	171	106.898	221 222	137 · 352 137 · 974	272	169 -048
	44.748	122	10.822	172		222	137.974	212	
73	45 - 369	123	76 -443	173	107 - 519	223	138 - 595	273	169 - 670
74	45 991	124	77.064	174	108 - 141	224	139 217	274	170 - 292
75	46 - 612	121 122 123 124 125	77 -685	171 172 173 174 175	108 - 762	225	139 - 838	275	170 - 913
76	46 · 612 47 · 234 47 · 855 48 · 477 49 · 0985 49 · 720	126	78 - 307	176 177 178 179 180	109 · 384 110 · 005	226	140 · 460 141 · 081 141 · 703 142 · 324	276	171 ·536 172 ·156
77	47 - 855	127	78 - 928	177	110 -005	227	141 081	277	172 - 156
78	48.477	198	79.550	178	110 - 627	228	141.703	978	172 -777
79	40 0005	120	80 - 171	170	111 -248	229	142 - 324	279	173 - 398
80	49.720	130	80 - 795	180	111 -870	230	142 946	280	174 .020
81	50 · 341	131	81 -416	181	112·491 113·113	231	143 - 567	281	174 - 642
82	50 - 963	132	82 - 038	182	113 - 113	232	144 189	282	175 - 263
83	51 - 584	133	82 - 659	183	113 · 734	233	144.810	283	175 -888
84	52 - 206	134	83 -281	184	114 - 356	234	145 - 432	284	176 - 507
85	52 -827	131 132 133 134 135	83 -902	181 182 183 184 185	114 - 977	235	146 053	285	177 - 128
86	53 -439	136	84 - 524	186 187 188 189 190	115.599	236	146 · 674 147 · 295 147 · 916	286	177 - 750
87	54.069	137	85 - 145	187	115 · 599 116 · 220	237	147 - 295	287	178 - 37
88	54 691	139	85 - 767	100	116 -842	238	147.016	288	178 - 992
89	55 312	120	86 - 388	100	117 463	239	148 - 538	289	179 - 613
90	55 - 935	136 137 138 139 140	87.01	190	117.403	240	149 160	290	180 - 23
		Contract Contract			TO THE WAR DON'T	S. 27049404		199594	
91	56 - 556	141 142 143 144 145	87 - 631	191	118·706 119·328	241	149.782	291	180 -85
92	57 - 178	142	88 - 253	192	119.328	242	150 404	292	181 -478
93	57 - 799	143	88 - 874	193	119 949	243	151 -025	293	182 - 100
94	58 - 421	144	89 - 496	194	120 - 571	244	151.647	294	182 - 722
95	59 - 042	145	90.117	191 192 193 194 195	121 - 192	245	152 - 218	295	183 - 343
96	59-664	146		196 197 198 199 200	121 -814	246	152 - 889	296	183 - 96
97	60 :285	146 147 148 149 150	91 - 360	107	121 ·814 122 ·435	247	153 - 510	297	184 - 58
98	60 - 907	140	91.982	100	100 057	0.40	154-132	298	185 . 20
	61.528	140	92.603	100	100 007	240	104.102		100.70
99	01.028	149	92.003	199	123 · 678 124 · 301	249 250	154 - 753	299 300	185 -82
100	62 - 1504	1 (50)	93 - 225	200	124.3(11	1 250	155 - 375	31311	186 -45

Knots into kilometres per hour.

Knots	Kilos.	Knots	Kilos.	Knots	Kilos.	Knots	Kilos.	Knots	Kilos.
1	1.853123	26	48 - 183	51	94 - 509	76	140 -836	101	187 - 165
2	3.706	27	50.037	52	96 - 362	77	142 - 689	102	189 018
3	5 · 559	28	51 -889	53	98 · 215	78	144 - 542	103	190 872
4	7.412	29	53 - 742	54	100 -068	79	146 - 395	104	192 - 725
5	9-265	30	55 - 594	55	101 -922	80	148 - 249	105	194 - 578
6	11 -119	31	57 - 447	56	103 - 775	81	150 - 103	106	196 -431
7	12.972	32	59 299	57	105 - 628	82	151 .956	107	198 284
. 8	14.825	33	61 · 153		107 481	83	153 - 809	108	200 137
9	16 - 678	34	63 .006	59	109 - 334	84	155 - 662	109	201 990
10	18 -531	35	64 - 859	60	111 -187	85	157 - 515	110	203 -841
11	20 - 384	36	66 - 712	61	113 -040	86	159 - 369	111	205 - 694
12	22 . 237	37	68 - 565		114 - 893	87	161 -221	112	207 547
13	24 - 090	38	70.418		116.746	88	163 -074	113	209 400
14	25.944	39	72 . 271	64	118 - 599	89	164 - 927	114	211 253
15	27 - 797	40	74 - 125	65	120 - 452	90	166.781	115	213 - 106
16	29 - 649	41	75 - 978	66	122 - 305	91	168 - 634	116	214.960
17	31 . 503	42	77 -831	67	124 158	92	170 .487	117	216 813
18	33 - 356	43	79 684	68	126 011	93	172 · 340	118	218 -666
19	35 - 209	44	81 - 537	69	127 864	94	174 - 193	119	220 - 519
20	37.062	45	83 - 390	70	129:718	95	176 -046	120	222 - 372
21	38 - 917	46	85 - 243	71	131 - 570	96	177 - 899		
22	40 - 771	47	87 .096	72	133 -423	97	179 - 752		
23	42.624	48	88 949	73	135 - 276	98	181 - 606		
24	44.477	49	90 - 803	74	137 - 129	99	183 -459		
25	46.329	50	92 - 656	75	138 982	100	185 - 312		

RATE OF CLIMB.

Feet per minute into metres per second.

Feet	Metres	Feet	Metres	Feet	Metres	Feet	Metres	Feet	Metres
1	0.00508	80	0 -40639	210	1.06678	360	1 -82877	510	2 - 59075
5	0.02540	85	0.43179	220	1 · 11758	370	1.87957	520	2 · 64155
10	0.05080	90	0.45719	230	1 -16838	380	1.93037	530	2 - 69235
. 15	0.07620	95	0.48259	240	1 -21918	390	1 - 98116	540	2:74315
20	0.10160	100	0.50799	250	1 - 26998	400	2 .03196	550	2.79395
25	0 - 12700	110	0.55879	260	1 - 32078	410	2.08276	560	2 · 84475
30	0.15240	120	0.60959	270	1.37158	420	2 - 13356	570	2 8955
35	0.17780	130	0.66039	280	1 42237	430	2 · 18436	580	2 . 9463
40	0.20320	140	0.71119	290	1 47317	440	2 . 23516	590	2 .9971
45	0.22860	150	0.76199	300	1.52397	450	2 · 28596	600	3 0479
50	0.25400	100	0.10133	300	1.92991	450	2.20000	600	3.0419
55	0.27939	160	0.81279	310	1.57477	460	2 - 33676	610	3.0987
60	0.30479	170	0.86358	320	1.62557	470	2 - 38756	620	3 - 1495
65	0.33019	180	0.91438	330	1.67637	480	2 · 43836	630	3 - 2003
70	0.35559	190	0.96518	340	1.72717	490	2 - 48915	640	3 - 2511
75	0.38099	200	1.01598	350	1.77797	500	2 - 53995	650	3 - 3019

Feet per minute into Metres per second—continued

Feet	Metres	Feet	Motres	Feet	Metres	Feet	Metres	Feet Metres
660	3 - 35274	760	3 - 86073	860	4 - 36872	960	4 · 87671	1600 8 - 12785
670	3 - 40354	770	3.91153	870	4.41952	970	4 . 92751	1700 8 63584
680	3 45434	780	3.96233	880	4 · 47032	980	4.97831	1800 9 14383
690	3.50514	790	4 01313	890	4.52112	990	5.02911	1900 9 65183
700	3 - 55594	800	4.06393	900	4 · 57192	1000	5.07991	2000 10 - 1598
710	3.60673	810	4.11473	910	4.62272	1100	5 - 58790	
720	3 - 65753	820	4.16552	920	4.67352	1200	6.09589	
730	3.70833	830	4.21632	930	4.72431	1300	6.60388	
740	3.75913	840	4.26712	940	4.77511	1400	7 - 11187	
750	3 - 80993	850	4.31792	950	4.82591	1500	7:61986	

RATE OF CLIMB.

Metres per second into feet per minute.

Metres	Feet	Metres	Feet	Metres	Feet	Metres	Feet	Metres	Feet
0.1	19-69	2 · 3	452 - 76	4.5	885 • 84	6.6	1299 - 24	8.8	1732 - 31
0.2	39.37	2.4	472 - 45	1000000		6.7	1318 92	8.9	1752 .00
0.3	59.06	2.5	492 - 13	4.6	905 - 53	6.8	1338 - 61	9.0	1771 -69
0.4	78.74	107.302.000		4.7	925 - 21	6.9	1358 - 29		
0.5	98.43	2.6	511.82	4.8	944 - 90	7.0	1377 - 98	9.1	1791 - 37
	131000	2.7	531 - 51	4.9	964 - 58	TO EST	TENEDON !	9.2	1811 -00
0.6	118.11	2.8	551 - 19	5.0	984 - 27	7.1	1397 - 66	9.3	1830 - 74
0.7	139 - 80	12.9	570 -88	0.0000000	30x 21	7.2	1417-35	9.4	1850 -43
0.8	157.50	3.0	590 - 56	146-276-5	Called Bridge	7.3	1437 - 03	9.5	1870 - 1
0.9	177 - 17	1977 705 640		5.1	1003 - 95	7.4	1456.72		7000 0
ĭ.ŏ	196 - 85	3.1	610 - 25	5 - 2	1023 - 64	7.5	1476 - 40	9.6	1889 - 80
		3.2	629 - 93	5.3	1043 - 33			9.7	1909 4
1.1	216.54	3.3	649 - 62	5.4	1063 01	7.6	1496 . 09	9.8	1929 - 1
1.2	236.22	3.4	669 - 30	5.5	1082 - 70	7.7	1515.78	9.9	1948 - 8
1.3	255 - 91	3.5	688 - 99	Ke sa sa		7.8	1535 - 46	10.0	1968 - 5
î.4	275 - 60	STATE TO SHIP	000 00	5.6	1102 - 38	7.9	1555-15	11.0	2165 · 3
î.5	295 - 28	3.6	708 - 67	5.7	1122 - 07	8.0	1574 - 83	12.0	2362 . 2
0.000	200 20	3.7	728 - 36	5.8	1141-75	15005	Markey est	13.0	2559 · 1
1.6	314.97	3.8	748.04	5.9	1161 - 44	8.1	1594 - 52	14.0	2755 • 9
1.7	334 - 65	3.9	767 - 73	6.0	1181 -21	8.2	1614 - 20	15.0	2952 - 8
1.8	354 .34	4.0	787 - 42	150/00		8.3	1633 - 89	10.0	4004.0
1.9	374.02	1 5 1		6.1	1200 - 81	8.4	1653 - 57	16.0	3149 - 6
2.0	393.71	4.1	807 - 10	6.2	1220 - 49	8.5	1673 - 26	17.0	3346 - 5
	203.17	4.2	826 - 79	6.3	1240 - 18	""		18.0	3543 - 3
2.1	413.39	4.3	846 - 47	6.4	1259 - 86	8.6	1692 - 94	19.0	3740 -2
2.2	433.08	4.4	866.16	6.5	1279.55	8.7	1712 63	20.0	3937 -0

AREA

Square Inch (sq. in.) = 6.45 cm² Square Foot (sq. ft.) = 0.092 m³ Square Yard = 0.836 m³ Acre = 0.404 hect. Square Mile (sq. m.) = 259 hect.

Square feet into square metres.

Square feet (sq. ft.	Motres ²	Square feet (sq. ft.)	Metres ²	Squa feet (sq. fi	Metres ²	Square feet (sq. ft.)	Metres ²	Square feet (sq. ft.)	Metres
1	0.0929	41	3.8088	81	7 - 5247	121	11 - 2405	161	14 - 9564
2	0.1858	42	3.9017	82	7.6176	122	11 -3334	162	15.0493
3	0 .2787	43	3.9946	83	7 - 7105	123	11.4263	163	15 1422
4	0.3716	44	4.0875	84	7 · 8033	124	11.5192	164	15 2351
5	0 · 4645	45	4.1804	85	7 - 8962	125	11.6121	165	15 3280
6	0.5574	46	4 - 2733	86	7 - 9891	126	11 - 7050	166	15 - 4209
7	0.6503	47	4.3662	87	8.0820	127	11.7979	167	15.4209
8	0.7432	48	4 · 4591	88	8.1749	128	11.8908	168	15.6067
. 9	0.8361	49	4.5520	89	8 - 2678	129	11.9837	169	15 6996
10	0.9290	50	4 · 6449	90	8 - 3607	130	12 0766	170	15.7925
11	1.0219	51	4.7377	91	8 · 4536	131	12 - 1695	171	15 -8854
12	1.1148	52	4.8306	92	8.5465	132	12 - 2624	172	15.9783
13	1.2077	53	4.9235	93	8.6394	133	12 - 3553	173	16.0712
14	1.3006	54	5.0164	94	8 · 7323	134	12 -4482	174	16 1641
15	1.3935	55	5 · 1093	95	8 · 8252	135	12.5411	175	16.2570
16	1 -4864	56	5 . 2022	96	8.9181	136	12 - 6340	176	16-3499
17	1.5792	57	5 . 2951	97	9.0110	137	12 .7269	177	16.4428
18	1 - 6721	58	5.3880	98	9 - 1039	138	12.8198	178	16.5357
19	1.7650	59	5 - 4809	99	9 · 1968	139	12 9127	179	16.6286
20	1.8579	60	5 - 5738	100	9 · 2897	140	13 0056	180	16.7215
21	1.9508	61	5 - 6667	101	9-3826	141	13 0985	181	
22	2-0437	62	5.7596	102	9 4755	142	13.1914	182	16 8144
23	2 · 1366	63	5 8525	103	9.5684	143	13 2843	183	16 9073
24	2 2295	64	5 . 9454	104	9:6613	144	13 - 3772	184	17:0002 17:0930
25	2 · 3224	65	6.0383	105	9.7542	145	13 4701	185	17.1858
26	2 4153	66	6 - 1312	106	9.8471	146	13 - 5630	186	1- 0-00
27	2.5082	67	6.2241	107	9 9400	147	13 -6559	187	17 · 2788 17 · 3717
28	2.6011	68	6 3170	108	10 0329	148	13.7488	188	17.4646
29	2 6940	69	6 4099	109	10 1258	149	13 - 8417	189	17 5575
30	2.7869	70	6 - 5028	110	10 -2187	150	13 - 9346	190	17.6504
31	2 · 8798	71	6 - 5957	111	10.3116	151	14 0274	191	17.7433
32	2.9727	72	6.6886	112	10.4045	152	14 1203	192	17.8362
33	3.0656	73	6.7815	113	10 4944	153	14 - 2132	193	17.9291
34	3.1585	74	6.8744	114	10 - 5903	154	14 - 3061	194	18.0220
35	3 - 2514	75	6.9673	115	10 -6832	155	14 - 3990		18.1149
36	3 - 3443	76	7.0602	116	10 - 7761	156	14 - 4919	196	18 - 2078
37	3 · 4372	77	7 - 1531	117	10 8689	157	14.5848		18.3007
38	3 - 5301	78	7 - 2460	118	10.9618	158	14 - 6777		18.3936
39	3 - 6230	79	7.3389	119	11 -0547	159	14 - 7706		18 4865
40	3.7159	80	7.4318	120	11 - 1476	160	14 -8635		18.5794

Square feet into square metres—(continued).

Square feet (sq.ft.)	Metres ² (m ²)	Square feet (sq.ft.)	Metres ² (m ²)	Square feet (sq.ft.)	Metres ² (m ²)	Square feet (sq. ft.)	Metres ² (m ²)	Square feet (sq. ft.)	Metres' (m²)
201	18 - 6723	270	25 .0824	480	44 - 5908	690	64 - 0991	900	83 - 6073
202	18 - 7652	280	26 0114	490	45 - 5198	700	65 .0279		
203	18 - 8581	290	26 . 9404	500	46 - 4485	186950		910	84 5363
204	18-9510	300	27 -8694			710	65 . 9569	920	85 4653
205	19 0439	Part Art S		510	47 - 3775	720	66 - 8859	930	86 3943
	West Stillers	310	28 7984	520	48 - 3065	730	67 - 8149	940	87 323
206	19 - 1368	320	29 - 7271	530	49 - 2355	740	68 - 7429	950	88 2522
207	19 - 2297	330	30 -6561	540	50 - 1645	750	69 6729		
208	19-3226	340	31 - 5851	550	51 .0935	HEARTS.		960	89 1812
209	19 - 4155	350	32 - 5141			760	70 -6019	970	90 - 1102
210	19.5084		基础的基本的 。	560	52 0225	770	71 - 5309	980	91 -0391
		360	33 -4430	570	52 9515	780	72 - 4699	990	91 - 9681
211	19 6013	370	34 - 3720	580	53 - 8805	790	73 - 3878	1000	92 - 8970
212	19.6942	380	35 - 3010	590	54 - 8094	800	74 - 3176		
213	19.7871	390	36 - 2300	600	55 - 7382			1010	93 - 8260
214	19.8800	400	37 - 1588	100000		810	75 -2466	1020	94 . 7550
215	19 - 9729	1144		610	56 - 6672	820	76 - 1756	1030	95 - 6839
		410	38 - 0878	620	57 - 5962	830	77 - 1046	1040	96 - 6129
216	20.0658	420	39.0168	630	58 - 5252	840	78 - 0336	1050	97 - 5419
220	20 4374	430	39 - 9458	640	59 - 4542	850	78 - 9625	Manage &	
230	21 -3664	440	40.8748	650	60 - 3831	TO SERVICE STATE		1060	98 - 4709
240	22 - 2954	450	41 - 8038	BARNET.		860	79.8915	1070	99 - 3998
250	23 2244	16232		660	61 - 3121	870	80 - 8205	1080	100 - 3288
		460	42.7328	670	62 - 2411	880	81 - 7495	1090	101 -2578
260	24 - 1534	470	43 6618	680	63 - 1701	890	82 - 6785	1100	102 - 1867

Square metres into square feet

Metres	Square i ² feet	Metle	Square s ² feet	Metres	Square feet	Metre	Square s ² feet	Metre	Square es² feet
1	10 -7758	21	226 - 292	41	441 -808	61	657 - 3238	81	872 - 840
2	21 - 5516	22	237 - 068	42	452 - 584	62	668 - 0996	82	883 -616
3	32 - 3274	23	247 -843	43	463 - 359	63	678 - 8754	83	894 - 391
4 5	43.1032	24	258 - 619	44	474 - 135	64	689 - 6512	84	905 · 167
5	53 - 8790	25	269 - 395	45	484 - 911	65	700 - 4270	85	915.943
6	64 - 6548	26	280 - 171	46	495 - 687	66	711 - 2028	86	926 - 719
7	75 - 4306	27	290 - 947	47	506 - 463	67	721 - 9786	87	937 - 495
8	86 - 2064	28	301 722	48	517 - 238	68	732 - 7544	88	948 - 270
9	96 - 9822	29	312 - 498	49	528 - 014	69	743 - 5302	89	959 . 046
10	107 - 758	30	323 - 274	50	538 - 790	70	754 - 306	90	969 - 822
11	118 - 5338	31	334 -050	51	549 - 566	71	765 - 082	91	980 - 598
12	129 - 3096	32	344 826	52	560 - 342	72	775 - 858	92	991 - 374
13	140.0854	33	355 -601	53	571 - 117	73	786 -633	93	1002 - 149
14	150 - 8614	34	366 - 377	54	581 -893	74	797 - 409	94	1012 925
15	161 -6370	35	377 - 153	55	592 - 669	75	808 - 185	95	1023 · 701
16	172 - 4128	36	387 - 929	56	603 - 445	76	818-961	96	1034 - 477
17	183 - 1886	37	398 - 705	57	614 - 221	77	829 - 737	97	1045 - 253
18	193 . 9644	38	409 - 680	58	624 - 996	78	840 - 512	98	1056-028
19	204 . 7402	39	420 - 256	59	635 - 772	79	851 - 288	99	1066 - 804
20	215 - 516	40	431.032	60	646 - 548	80	862 . 064	100	1077 - 580

CUBIC VALUES

CUBIC INCH = 16:386 cm². CUBIC FOOT = 28:315 dm² or 0²:028. PINT = 0:5879 litres.

GALLON = 8 Pints = 4:5435 litres or 0m²:004543.

CUBIC VALUES AND CAPACITY MEASURES.

Gallons in litres.

Galls.	Litres	Galls.	Litres	Galls.	Litres	Galls.	Litres	Galls.	Litres
1	4.55	24	109-10	46	209:11	69	313 - 67	91	413 - 68
2	9.09	25	113-65	47	213.66	70	318 - 22	92	418 23
3	13.64			48	218 - 21	335633		93	422 77
4	18-18	100	175444576	49	222 - 75	100000		94	427 - 32
5	22.73	26	118 - 20	50	227 - 30	71	322 - 76	95	431 -87
		27	122.74			72	327 - 31		Survivi -
	07 00	28	127 - 29		227 24	73	331 -86	96	436 - 41
6	27.28	29	131 -83	51	231.84	74	336 - 40	97	440 - 96
7	31.82	30	136 · 38	52	236 - 39	75	340 - 95	98	445.50
8 9	36.37	35		53	240.94	18 38 57 11		99	450.05
	40.91			54	245 · 48			100	454 - 60
10	45.46	31	140.92	55	250.03	76	345 · 49		201 00
		32	145 - 47	0476904		77	350.04	105	477 - 33
11	50.01	33	150.02	56	254 - 57	78	354 - 59	108	490.90
12	54.55	34	154.56	57	259 - 12	79	359 · 13	110	500.06
13	59.10	35	159 · 11	58	263 - 67	80	363 - 68	115	522 - 79
14	63 - 64			59	268 - 21			120	545 - 52
15	68 · 19	36	163 - 65	60	272.76	81	368 - 22		
		37	168 - 20	STORY IS		82	372 - 77	125	568 - 25
		38	172.75	Walle College		83	377 - 31	130	590 - 98
16	72 · 74 77 · 28	39	177.29	61	277 . 30	84	381 - 86	135	613.71
17		40	181 - 84	62	281 -85	85	386 - 41	140	636 - 43
18	81 -83		SWEEKS	63	286 -40		300.41	150	681 - 89
19	86.37			64	290.94	To the second			sideres)
20	90 - 92	41	186.38	65	295 · 49	86	390 - 95	160	727 : 35
		42	190 93			87	395 - 50	170	772 - 81
21	95 - 47	43	195 · 48	66	300.03	88	400.04	180	818 27
22	100.01	44	200 - 02	67	304 - 58	89	404 - 59	190	863 - 73
23	104.56	45	204 - 57	68	309 - 13	90	409.14	200	909 - 19

Litres in gallons.

itres (lalls. Pints	Litres	Galls.	Pints	Litres	Galls.	Pints	Litres	Galls.	Pints	Litres	Galls.	Pints
1	1.76	22	4	6.72	43	9	3 · 67	64		0.63	85	18	5 . 58
2	3.52	23	5		44	9	5.43	65	14	2.39	86	18	7.34
3	5 - 28	24	5	2.24	45	9	7.09				87	19	1.10
4	7.04	25	5	4.0	1000			66	14	2.39			
- 5	1+0.80	1000			46		0.95	67	14	5.91	88	19	2.86
		26	5	5.75	47	10	2.71	68	14	7.67	89	19	4 62
6	1 2.56	27	- 5	7.51	48	10	4.47	69	15	1.43	90	19	6.38
7	1 4.32	28	6	1.27	49	10	6.23	70	15	3.19	91	20	0.14
8	1 6.08	29	6	3.03	50	10	7.99				92	20	
9	1 7.84	30	6	4.79				71	15	4.95	93	20	3.66
10	2 1.60				51	- 11	1.75	72	15	6.71	94	20	5.42
		31	6	6.55	52	- 11	3.51	73	16	0.47	95		7.18
11	2 3.36	32	7	0.31	53	11	5.27	74	16	2.23	30	- 20	1.10
12	2 5.12	33	7	2.07	54	11	7.03	75	16	3.99	96	21	0.94
13	2 6.88	34	7	3.83	55	12	0.79	10000			97	21	2.70
14	3 0.64	35	7	5.59				76	16	5.74	98	21	4.40
15	3 2.40			SYNTE	56	12	2.55	77	16	7.50	99	21	6 . 22
		36	7	7.35	57	12	4.31	78	17	1.26	100	21	7.98
16	3 4.16	37	8	1.11	58	12	6.07	79	17	3.02	1	2012	100
17	3 5.92	38		2.87	59	12	7.83	80	17	4.78	125	27	3 .98
18	3 7.68	39		4.63	60	13	1.59	a district			150	32	7 - 97
19	4 1.44	40			400	9.27		81	17	6.54	200	43	7.96
20	4 3.20				61	13	3 - 35	82	18	0.30	300	65	7 . 94
~~		41	9	0.15	62	13	5.11	83	18	2.06	400	87	7 - 92
21	4 4.96	42		1.91	63	13	6.87	84	18	3.82	500	109	7.90

WEIGHTS

Ounce (oz.) Ozs. 8 = ·227 kg.; 10 Ozs. = ·284 kg.; 12 Ozs. = ·340 kg.; 14 Ozs. = ·397 kg. = 28 ·34 gr.

POUND (lb.) = Okg. 463 gr. Stone (14 pounds) = 6 ·343 kg.

QUARTERS (qrs.) = 12 ·7 kg. Hundredweight (cwt.) (112 pounds) = 50 ·782 kg. Ton (20 cwt.) = 1016 ·648 kg.

Pounds into kilogrammes.

Pounds (lb.)	Kilogr. (kg.)	Pounds (lb.)	Kilogr, (kg.)	Pounds (lb.)	Kilogr. (kg.)	Pounds (lb.)	Kilogr. (kg.)	Pounds (lb.)	Kilogr. (kg.)
1	0.454	16	7.257	31	14 -061	46	20 -865	61	27 - 669
2	0.907	17	7.711	32	14 - 515	47	21 · 319	62	28 123
3	1.361	18	8 - 165	33	14 - 969	48	21.772	63	28 - 576
4	1.814	19	8.618	34	15 - 422	49	22.226	64	29 .030
5	2.268	20	9.072	35	15 -876	50	22 · 680	65	29 . 48
6	2.722	21	9 - 525	36	16 - 329	51	23 - 133	66	29 - 93
7	3.175	22	9.979	37	16.783	52	23.589	67	30 - 39
8	3.629	23	10 -433	38	17 -237	53	24.040	68	30 .84
9	4.082	24	10 .886	39	17 -690	54	24 - 494	69	31 -29
10	4.536	25	11 -340	40	18-144	55	24 . 948	70	31 - 75
11	4.990	26	11.793	41	18 - 597	56	25 401	71	32 - 20
12	5.443	27	12.247	42	19.051	57	25 - 855	72	32 - 65
13	5 - 897	28	12.701	43	19.504	58	26.308	73	33 - 11
14	6.350	29	13.154	44	19 . 958	59	26.762	74	33 . 56
15	6.804	30	13.608	45	20 .412	60	27.216	75	34.01

Pounds into kilogrammes—continued

Pounds (lb.)	Kilogr. (kg.)	Pounds (lb.)	Kilogr. (kg.)	Pounds (lb.)	Kilogr. (kg.)	Pounds (lb.)	Kilogr. (kg.)	Pounds (lb.)	Kilogr. (kg.)
- 76	34 - 473	126	57 · 153	176	79 - 832	226	102 - 512	276	125 192
77	34 - 927	127	57 - 606	177	80 - 286	227	102 - 966	277	125 - 645
78	35 - 380	128	58 060	178	80 - 740	228	103 -419	278	126 099
79	35 -834	129	58 - 513	179	81 - 193	229	103 - 873	279	126 - 552
80	36 -287	130	58-967	180	81 -647	230	104 - 326	280	127 .006
81	36 - 741	131 132	59 - 421	181	82 · 100	231	104 - 780	281	127 -460
82	37 195	132	59 874	182	82 - 554	232	105 234	282	127 - 913
83 84	37 -648	133	60 - 328	183	83 - 008	233	105 - 687	283	128 - 367
85	38 · 102 38 · 555	134 135	60 · 781 61 · 235	184 185	83 · 461 83 · 915	234 235	106 · 141 106 · 594	284 285	128 · 820 129 · 274
86	39 -009	136	61 - 689	186	84 - 368	236		286	
87	39 463	137	62 - 142	187	84.822	237	107 · 048 107 · 502	287	129 .728
88	39.916	138	62 - 596	188	85 275	238	107.955	288	130 · 181 130 · 635
89	40.370	139	63 - 049	189	85 - 729	239	108 - 409	289	131 088
90	40 - 823	140	63 - 503	190	86 183	240	108 - 862	290	131 -542
91	41 - 277	141	63 - 957	191	86 - 636	241	109-316	291	131 -996
92	41 -731	142	64-410	192	87 . 090	242	109 -770	292	132 -449
93	42 · 184	143	64 . 864	193	87 - 543	243	110 -223	293	132 -903
94	42 - 638	144	65 - 317	194	87 - 997	244	110 - 677	294	133 - 306
95	43 .091	145	65 - 771	195	88 -851	245	111 -130	295	133 -810
96 97	43 - 545	146	66 - 225	196	88 904	246	111 -584	296	134 - 264
	43.999	147	66 - 678	197	89 - 358	247	112.037	297	134 - 717
98 99	44 · 452 44 · 906	148 149	67 - 132	198	89.811	248	112 - 491	298	135 - 171
100	45 - 359	150	67 -585 68 -039	199 200	90 · 265 90 · 719	249 250	112 · 945 113 · 398	299 300	135 · 624 136 · 078
101	45 - 813	151	68-493	201	91 -172	251	113 -852	301	
102	46 - 266	152	68 - 946	202	91 -626	252	114 - 305	302	136 · 531 136 · 985
103	46 720	153	69 400	203	92.079	253	114 759	303	137 -439
104	47 - 174	154	69 - 853	204	92.533	254	115.213	304	137 892
105	47 -627	155	70 - 307	205	92.987	255	115 -666	305	138 -346
106	48.081	156	70 - 761	206	93 - 440	256	116 - 120	306	138 - 799
107	48 - 534	157	71 214	207	93 - 894	257	116 - 573	307	139 - 253
108	48-988	158	71 -668	208	94 347	258	117 .027	308	139.707
109	49 - 442	159	72 - 121	209	94 · 801	259	117 -481	309	140 - 160
110	49 895	160	72 - 575	210	95 - 255	260	117 - 934	310	140 - 614
111	50 -349	161	73 -028	211	95 - 708	261	118 - 388	311	141 -067
112 113	50 802	162	73 482	212	96 - 162	262	118 - 841	312	141 - 521
114	51 -256 51 -710	163 164	73 · 936 74 · 389	213	96 - 615	263	119 - 295	313	141 .975
115	52 - 163	164 165	74 · 389 74 · 843	214 215	97 · 069 97 · 522	264 265	119·749 120·202	314 315	142 · 428 142 · 882
116	52 617	166	75 - 296	216	97 - 976		120 -656		
117	53 -070	167	75 - 750	217	98.430	267	120 - 656	316	143 · 335 143 · 789
118	53 524	168	76.204	218	98 883		121.109		144 - 243
119	53 978	169	76 -657	219	99 -337		122 017		144 - 696
120	54 · 431	170	77.111	220	99 - 790		122 470		145 - 150
121	54 -885	171	77 - 564	221	100 -244	271	122 - 924	321	145 - 603
122	55 338	172	78 - 018	222	100 - 608		123 - 377	322	146 -057
123	55 792	173	78 472	223	101 -151		123 831		146 -511
124	56 - 246	174	78 - 925	224	101 -605	274	124 - 284		146 964
125	56 - 699	175	79-379	225	102 058	275	124 - 738		147-418

Pounds into kilogrammes—continued

Pounds (lb.)	Kilogr. (kg.)	Pounds (lb.)	Kilogr. (kg.)	Pounds (lb.)	Kilogr. (kg.)	Pounds (lb.)	Kilogr. (kg.)	Pounds (lb).	Kilogr. (kg.)
326	147 - 871	376	170 - 551	426	193 - 131	476	215 - 910	526	238 - 590
327	148 - 325	377	171 -005	427	193 584	477	216 - 364	527	239 044
328	148 779	378	171 - 458	428	194 .038	478	216 - 817	528	239 497
329	149 - 231	379	171 912	429	194 591	479	217 . 271	529	239 951
330	149 - 686	380	172 - 365	430	195 .045	480	217 725	530	240 404
331	150 - 139	381	172 - 819	431	195 499	481	218 - 178	531	240 -858
332	150 - 593	382	173 - 273		195 952	482	218 632	532	241 -311
333	151-046	383	173 726	433	196 · 406 196 · 859	483	219 085	533	241 - 765
334	151 -500	384	174 - 180	434	196 859	484	219 539	534	242 - 219
335	151 - 954	385	174 633	435	197 - 313	485	219 993	535	242 - 672
336	152 - 407	386	175 .087	436	197 - 767	486	220 -446	536	243 - 126
337	152 - 861	387	175 - 540	437	198 - 220	487	220 900	537	243 579
338	153.314	388	175 - 994	438	198 · 674	488	221 -353	538	244 .033
339	153.768	389	176 -448	439	199 - 127	489	221 -807	539	244 - 487
340	154 - 222	390	176.901	440	199-581	490	222 - 261	540 1	244 - 940
341	154 - 675	391	177 - 355	. 441	200 -035	491	222 - 714	541	245 394
342	155 129	392	177.808	442	200 - 488	492	223 168	542	245 847
343	155 582	393	178-262	443	200 - 942	493	223 621	543	246 301
344	156 036	394	178 716	444	201 - 395	494	224 075	544	246 .755
345	156 490	395	179 - 169	445	201 - 849	495	224 - 529	545	247 · 208
346	156 943	396	179 623	446	202 - 302	496	224 - 982	546	247 662
347	157 - 397	397	180, 076	447	202 - 756	497	225 - 436	547	248 - 115
348	157 850	398	180 530	448	203 210	498	225 -889	548	248 - 569
349 350	158 · 304 158 · 758	399 400	180 · 984 181 · 437	449 450	203 · 663 204 · 177	499 500°	226 · 343 226 · 797	549 550	249 023 249 476
061	159 - 211	401	181 -891	S-1000	004 500	501	227 - 250	551	249 930
351 352	159 665	402	182 - 344	451 452	204 · 570 205 · 024	502	227.704	552	250 383
353	160 118	403	182 798	453	205 - 478	503	228 157	553	250 - 937
354	160 - 573	404	183 - 252	454	205 - 931	504	228 - 611	554	251 - 291
355	161.026	405	183 -705	455	206 - 385	505	229 064	555	251 .744
356	161 -479	406	184 - 159	456	206 838	506	229 - 518	556	252 · 198
357	161 933	407	184 - 612	457	207 292	507	229 - 972	557	252 651
358	161:933 162:386	408	185 .066	458	207 - 746	508	230 -425	558	253 105
359	162 840	409	185 - 520	459	208 - 199	509	230.879	559	253 558
360	163 - 293	410	185 - 973	460	208 - 653	510	231 - 332	560	254 012
361	163.747	411	186 427	461	209 - 106	511	231 - 786	561	254 - 466
362	164 - 201	412	186 - 880	462	209 - 560	512	232 - 240	562	254 919
363	164 - 654	413	187 - 334	463	209 · 560 210 · 014	513	232 - 693	563	255 - 373
364	165 - 108	414	187 - 788	464	210 467	514	233 147	564	255 - 826
365	165.561	415	188 - 241	465	210 - 921	515	233 600	565	256 - 280
366	166-015	416	188 - 695	466	211 - 374	516	234 054	566	256 - 734
367	166 469	417	189 148	467	211 -828	517	234 - 508	567	257 187
368	166 922	418	189 - 602	468	212 282	518	234 961	568	257 - 641
369	167 376	419	190 -055	469	212 735	519	235 .415	569	258 - 094
370	167 - 829	420	190 - 509	470	213 - 189	520	235 -868	570	258 - 548
371	168 - 283	421	190 - 963	471	213 642	521	236 - 322	571	259 - 002
372	168 - 737	422	191 416	472	214 -096	522	236.776	572	259 - 455
373	169 - 190	423	191 -870	473	214 - 549	523	237 - 229	573	259 909
374	169 - 644	424	192 - 323	474	215 -003	524	237 - 688	574	260 362
375	170.097	425	192 -777	475	215 - 457	525	238 - 136	575	260 816

Pounds into kilogrammes—continued

Pounds (lb.)	Kilogr. (kg.)	Pounds (lb.)	Kilogr. (kg.)	Pounds (lb.)	Kilogr. (kg.)	Pounds (lb.)	Kilogr. (kg.)		Kilogr. (kg.)
576	261 270	626	283 949	676	306 629	726	329 - 309	776	351 988
577	261 723	627	284 · 403 284 · 856	677 678	307 -082	727	329 762	777	352 442
578	262 - 177	628	284 -856	678	307 - 536	728	330 - 216	778	352 - 898
579	262 -650	629	285 -310	679	307 - 990	729	330 - 669	779	353 - 349
580	263 084	630	285 - 764	680	308 -443	730	331 - 123	780	353 -803
581	263 - 538	631	286 - 217	681	308 - 897	731	331 - 576	781	354 - 256
582	263 991	632	286 - 671	682 683	309 - 350	732	332 - 030	782	354 - 710
583	264 -445	633	287 124	683	309 - 804	733	332 · 484 332 · 937	783	355 163
584	264 898	634	287 - 578	684	310 -258	734	332 937	784	355-617
585	265 - 352	635	288 -032	685	310 - 711	735	333 - 391	785	356 -071
586	265 - 805	636	288 485	686	311 ·165 311 ·618	736	333 - 844	786	356 - 524
587	266 · 259 266 · 713	637	288 939	687	311 618	737	334 298	787	356 978
588	266 713	638	289 - 392	688	312 072	738	334 - 752	788	357 431
589	267 166	639	289 846	689	312 - 526	739	335 205	789	357 -885
590	267 - 620	640	290 · 300	690	312 - 979	740	335.659	790	358 - 338
591	268 - 073	641	290 - 753	691	313 433	741	336 - 112	791	358 792
592	268 - 527	642	291 207	692	313 886 314 340	742 743	336 · 566 337 · 020	792	359 - 246
593	268 981	643	291 -660	693	314 340	743	337 020	793	359 699
594	269 434	644	292 114	694	314 - 794	744	337 - 473	794	360 - 153
595	269 888	645	292 - 567	695	315 - 247	745	337 - 927	795	360 - 600
596	270 - 341	646	293 -021	696	315 - 701	746	338 - 380	796	361 -060
597	270 - 795	647	293 -475	697	316 154	747	338 834	797	361 - 514
598	271 -249	648	293 - 928	698	316 · 608 317 · 062	748	339 288	798	361 - 967
599	271 - 702	649	294 - 382	699	317.062	749	339 - 741	799	362 421
600	272 - 156	650	294 - 835	700	317 - 515	750	340 - 195	800	362 - 764
601	272 - 609	651	295 - 289	701	317 · 969 318 · 422	751 752	340 - 648	850	387 - 369
602	273 -063	652	295 - 743	702	318 422	752	341 · 102 341 · 556	900	410.089
603	273 - 517	653	296 196	703	318 - 876	753	341 .556	950	430 800
604	273 - 970	654	296 650	704	319 - 329	754	342 009	1000	453 594
605	274 - 424	655	297 103	705	319.783	755	342 - 463	1500	680 - 391
606	274 - 877	656	297 -557	706	320 - 237	756	342-916	2000	907 - 188
607	275 331	657	298 011	707	320 - 690	757	343 - 370	15 W. S.	
608	275 . 785	658	298 464	708	320 · 690 321 · 144	758	343 - 823	2500	1133 985
609	276 238	659	298 918	709	321 - 597	759	344 - 277	3000	1360.782
610	276 - 692	660	299 - 371	710	322 -051	760	344 - 731	3500	L587·58
611	277 - 145	661	299 825	711	322 - 505	761	245 104		1814 376
612	277.599	662	300 279	711 712	322 - 958	762	345 184	- 1000000000000000000000000000000000000	
613	278 053	663	300 732	713	323 412	763	345 · 638 346 · 091	4500	2040 - 873
614	278 506	664	301 186	714	323 412	764	940 645	5000	2267 - 470
615	278 960	665	301 -639	714	323 805	764 765	346 · 545 346 · 999	5500	2494 - 067
						11/20/2004			2720 - 664
616	279 413	666	302 093	716 717	324 .773	766	347 452	1,000,000,000	
617	279 867	667	302 - 547	717	325 226	767	347 906		2947 261
618	280 - 320	668	303 000	718	325 - 680	768	348 - 359	7000	3173 - 858
	280 - 774	669	303 -454	719	326 - 133	769	348 813	7500 :	3400 - 455
620	281 - 228	670	303 - 907	720	326 - 587	770	349 267		3268 - 752
621	281 681	671 672	304 - 361	721 722	327 -041	771	349 - 720	8500 3	3853 - 649
622	282 135	672	304 814	722	327 - 494	772	350 - 174		1080 -246
623	282 - 588	673	305 268	723	327 - 948	773	350 - 627		
	283 -042	674	305 - 722	724	328 401	774	351 .081	9500 4	1306 - 843
625	283-496	675	306 175	725	328 - 855	775	351 - 535	10000 4	1533 440

2240 lbs. = 1016 048 kg. = 1 ton. = 20 cwt.

Kilogrammes into pounds.

Kilogr.	Pounds	Kilogr.	Pounds	Kilogr.	Pounds	Kilogr.	Pounds	Kilogr.	Pounds
1	2 · 20462	51	112 - 435	101	222 - 667	151	332 -898	201	443 129
2	4 409	52	114 - 639	102	224 - 871	152	335 102	202	445 333
3	6.614	53	116 -844	103	227 -076	153	337 - 307	203	447 - 538
	8.813		110.044	103	229 281	154	339 - 511	204	449 - 743
4	8.813	54	119 048		229.281	101	341 -716	205	451 947
5	11 -023	55	121 -253	105	231 -485	155	341.110	200	401 011
6	13 - 228	56	123 - 458	106	233 -690	156	343 921	206	454 153
7	15 - 432	57	125 - 662	107	235 894	157	346 125	207	456 357
8	17.637	58	127 - 867	108	238 .099	158	348 330	208	458 552
9	19.841	59	130 - 071	109	240 - 304	159	350 - 534	209	460 - 757
10	22.046	60	132 - 277	110	242 - 508	160	352 739	210	462 970
					044 810	101	354 944	211	465 175
11	24 251	61	134 482	111	244 . 713	161	077 140	212	467 - 379
12	26 455	62	136 - 686	112	246 - 917	162	357 148		
13	28 660	63	138 891	113	249 - 122	163	359 353	213	469 - 584
14	30 865	64	141 .096	114	251 -327	164	361 558	214	471 . 789
15	33 069	65	143 - 300	115	253 - 531	165	363 - 762	215	473 - 998
16	35 - 274	66	145 - 505	116	255 - 736	166	365 - 967	216	476 - 198
10					257 -940	167	368 171	217	478 - 402
17	37 478	67	147 - 709	117	207.940			218	480 607
18	39 683	68	149.914	118	260 - 145	168	370 - 376		
19	41.888	69	152 - 119	119	262 - 350	169	372 581	219	482 812
20	44 .092	70	154 - 323	120	264 - 555	170	374 - 785	220	485.010
21	46.29;	71	156 - 528	121	266 - 760	171	376 - 990	221	487 - 221
22	48.501	72	158 -733	122	268 - 964	172	379 - 195	222	489 426
23	50 706	73	160 - 937	123	271 -168	173	381 399	223	491 630
	50.700		163 142		273 - 373	174	383 -604	224	493 835
24	52.910	74		124			385 808	225	496 039
25	55 115	75	165 - 347	125	275 - 578	175	390 .909	220	490.099
26	57 320	76	167 - 551	126	277 - 782	176	388 - 013	226	498 - 244
27	59 524	77	169 - 756	127	279 - 987	177	390 218	227	500 -449
28	61 729	78	171 - 960	128	282 - 191	178	392 -422	228	502 653
29	63 934	79	174 - 165	129	284 396	179	394 621	229	504 858
30	66 139	80	176 - 370	130	286 - 601	180	396 -832	230	507 - 063
				E-San San		14.22	000.000	001	FOO 007
31	68 343	81	178 - 573	131	281 -805	181	399 036	231	509 267
32	70 - 548	82	180 - 778	132	298-010	182	401 -241	232	511 472
33	72 - 753	83	182 - 982	133	293 214	183	403 445	233	513 - 676
34	74 957	84	185 - 187	134	295 -419	184	405 -650	234	515 881
35	77 162	85	187 - 392	135	297 - 624	185	407 - 855	235	518 -086
			200 500	1	299 - 828	186	410 - 059	236	520 - 290
36	79 366	86	189 - 596	136			410.004	237	522 - 495
37	81 - 571	87	191 -801	137	302 -033	187	412 - 264		
38	83 - 776	88	194 005	138	304 - 237	188	414 - 468	238	524 699
39	85 980	89	196 - 210	139	306 - 442	189	416 - 878	239	526 904
40	88 - 184	90	198 416	140	308 - 647	190	418 - 878	240	529 109
	90 - 389	91	200 - 620	141	310 -851	191	421 -082	241	531 313
41		91	202 - 825	142	313 056	192	423 -287	242	533 -519
42	92.593				010 000	193	425 492	243	535 .723
43	94 - 798	93	205 030	143	315 - 261		427 - 696	243	578 927
44	97.002	94	207 - 284	144	317 - 465	194			
45	99 - 207	95	209 - 439	145	319 - 670	195	429 - 901	245	540 - 132
46	101 412	96	211 -643	146	321 -874	196	432 - 105	246	542 - 336
				147	324 079	197	434 - 310	247	544 - 541
47	103 - 616	97	213 848		996 999	198	436 515	248	546 - 746
48	105 - 821	98	216 -053	148	326 - 283	100	400 HIV	249	548 950
49	108:025	99	218 - 257	149	328 - 488	199	438 · 719 440 · 921	250	010 000
50	110 - 230	100	220 462	150	330 693	200	440 921	200	551 150

Kilogrammes into pounds—continued

Kilogr.	Pounds	Kilogr.	Pounds	Kilogr.	Pounds	Kilogr.	Pounds	Kilogr.	Pounds
251	553 360	271	597 -452	291	641 - 544	1400	3086 471	3400	7495 - 7
252	555 564	272	599 - 657	292	643 - 749	1500	3306 - 933	3500	7716 -177
253	557 769	273	601 -861	293	645 - 948	1600	3527 - 395	3600	7936 - 639
254	559 973	274	604 - 066	294	648 - 252	1700	3747 - 857	3700	8157 -002
255	562 - 178	275	606 - 270	295	650 - 457	1800	3968 - 320	3800	8377 - 464
256	564 383	276	608 475	296	652 - 662	1900	4188 - 781		
257	566 - 587	277	610 672	297	654 - 866	2000	4409 - 2446	3900	8597 926
258	568 - 792	278	612 875	298	657 071	2100	4629 - 709	4000	8818 4895
259	570 996	279	615 -080	299	659 275	2200	4850 - 170	4100	9038 951
260	573 201	280	617 - 294	300	661 -480	2300	5070 - 632	4200	9259 -413
				15945000		1000		4300	9479 - 875
261	575 406	281	619 - 498	400	881 - 848	2400	5291 -094		
262	577 610	282	621 - 703	500	1102 - 310	2500	5511 - 557	Toke Co	
263	579 815	283	623 - 907	600	1322 - 773	2600	5732 -019	4400	9700 - 338
264	582 - 020	284	626 -112	700	1543 - 237	2700	5952 -481	4500	9920 - 799
265	584 - 224	285	628 - 317	800	1763 - 697	2800	6172 - 943	4600	10141 -262
		15.00		1625.85		15,000		4700	10361 724
266	586 429	286	630 - 521	900	1984 - 159	2900	6293 - 405	4800	10582 186
267	588 - 633	287	632 - 726	1000	2204 - 6223	3000	6613 - 8669	1995	있는데 문제한
268	590 830	288	634 - 930	11C0	2425 084	3100	6834 329	1000	
269	593 • 043	289	637 - 135	1200	2645 546	3200	7054 - 791	4900	10802 - 648
270	595 -247	290	639 - 340	1300	2866 0009	3300	7275 - 253	5000	11023 -1

Pounds per square foot into kilogrammes per square metre.

Pounds per sq. foot	Kilogr. per m²								
1.0	4.883	3 5	17.089	6.0	29 - 296 t	8 - 5	41 - 502	11 0	53 - 713
1 1	5 - 371	3 6	17 - 578	6.1	29.784	8.6	41 - 991	11 1	54 197
1.2	5 859	3 7	18.066	6 2	30 - 273	8.7	42 - 479	11.2	54 686
1 3	6 347	3 8	18.554	6.3	30 .761	8 8	42.967	11 3	55 174
1.4	6 - 835	3 9	19 043	6 4	31 -249	8.9	43 - 456	11 4	55 - 662
15	7 - 323	4 0	19 - 530	6.5	31 - 737	9.0	43 943		
1.6	7.811	4.1	20.018	6.6	32 - 226	9.1	44 - 431	12 (14-14)	
1.7	8 - 299	4.2	20 - 506	6.7	32.714	9.2	44.919	11.5	56 - 150
1.8	8 - 787	4 · 3	20 - 995	68	33 - 202	9.3	45 408	11 6	56 - 639
1.9	9 - 275	4 4	21 -483	6.9	33 - 690	9.4	45 - 896	11.7	57 127
	对中国共和国	48 Dec 19			0.000			11 -8	57 - 615
2.0	9.765	4.5	21 971	7.0	34 - 178	9.5	46.384	11.9	58 104
2 1	10 253	4.6	22 -460	7 1	34 .666	9.6	46 .873	1213 FL	
2.2	10.742	4.7	22 948	7.2	35-155	9 7	47 361	1000000	
2 3	11 -229	4.8	23 - 436	7 .3	35 - 643	9-8	47 . 849		
2.4	11.718	4 9	23 . 925	7.4	36 - 131	9.9	48-338	12.0	58 591
		Carlo Sala				1500000		12.1	59 080
2.5	12.206	5 0	24 413	7.5	36 - 619	10 0	48 826	12 2	59 569
2 6	12 - 695	5.1	24 901	7.6	37 108	10-1	49.314	12 3	60 057
2.7	13 183	5.2	25 - 389	7.7	37 596	10 2	49 802	12:4	60 545
2.8	13 671	5 3	25 -878	7.8	38 084	10 3	50 291	The Property	
2.9	14 - 160	5.4	26.366	7 9	38 - 573	10 -4	50 - 779		
3 0	14 - 648	5 5	26 .854	8.0	39 061	10 5	51 -267	12.5	61 033
3.1	15 - 136	5.6	27 .343	8 1	39 549	10.6	51 -756	12 6	61-522
3 2	15 -625	5.7	27 .831	8.2	40 - 038	10 -7	52 - 244	12.7	62.010
3 · 3	16 113	5 8	28 - 319	8.3	40 - 526	10 8	52 - 732	12.8	62 - 498
3.4	16 601	5 9	28 -808	8.4	41.014	10 9	53 - 207	12.9	62 - 987

Kilogrammes per square metre into pounds per square foot.

Kilogr. per m²	Pounds per sq. foot	Kilogr. per m²							
0.1	0.02047	14	2 - 866	36	7 - 369	58	11 - 8726	80	16 - 376
0.2	0.04094	15	3.070	37	7 574	59	12 0773	13,5000	
0.3	0.06141			38	7 . 779	60	12 - 282	81	16.5807
0.4	0.08188	16	3.275	39	7 983	1000		82	16.7854
0.5	0.10235	17	3.48	40	8 188	61	12 487	83	16 9901
70000		18	3 - 685	1.744.7		62	12 6914	84	17 - 1948
0.6	0.12285	19	3 889	41	8 - 393	63	12.896	85	17.310
0.7	0:14329	20	4.094	42	8 - 597	64	13.1008		
0.8	0.16376			43	8 · 802	65	13 - 305	86	17.604
0.9	0.18423	21	4 299	44	9.007			87	17.809
	여러 선생님	22	4 503	45	9.211	66	13 - 510	88	18 014
1	0.2047	23	4.708	10000		67	13.715	89	18.218
2	0.4094	24	4.913	46	9.416	68	13.920	90	
3	0.6141	25	5.117	47	9.621	69	14 124	90	18 · 423
4	0.8188	100		48	9.826	70	14.329	1,000 Ma	
- 5	1.0235	26	5 - 322	49	10.030	5-32-50		91	18 - 628
		27	5 - 527	50	10 -235	71	14 - 5337	92	18 832
6	1 - 2282	28	5.732	1.355		72	14 7384	93	19 037
7	1 - 4329	29	5.936	51	10 4397	73	14 9431	94	19 242
8	1.6376	30	6 141	52	10 - 6444	74	15.1478	95	19 - 446
9	1.8423	13.5		53	10 . 8491	75	15.352		
10 .	2.047	31	6 - 346	54	11 0538	Inches:		96	19 651
		32	6 - 5504	55	11 -2585	76	15.557	97	19 -856
11	2 · 252	33	6 .755			77	15.762	98	20.061
12	2 · 456	34	6.960	56	11 -4632	78	15-967	99	20 - 265
13	2 661	35	7.164	57	11 - 6679	79	16.171	100 -	20 - 47

Tons per square inch into kilogrammes per square millimetre.

Tons per sq. in.	Kilogr. per mm²								
1	1.575	16	25 198	31	48.821	46	72 - 444	61	96 - 067
2	3 - 150	17	26 - 773	32	50 396	47	74.019	62	97 642
3	4.725	. 18	28 .348	33	51 .971	48	75 594	63	99 217
4	6 - 299	19	29 - 923	34	53 546	49	77 - 169	64	100 - 792
5	7 · 874	20	31 -497	35	55 - 120	50	78 - 743	65	102 - 367
6	9 - 449	21	33 - 072	36	56 695	51	80 - 318	66	103 - 94
7	11.024	22	34 - 647	37	58 270	52	81 - 893	67	105 - 516
8	12 - 599	23	36 - 222	38	59 845	53	83 468	68	107 - 09
9	14 - 174	24	37 - 797	39	61 -420	54	86 043	69	108 - 66
10	15 - 749	25	39 - 372	40	62 - 995	55	86 - 618	70	110 -24
11	17.324	26	40 - 947	41	64 - 570	56	88 - 193	71	111.81
12	18 - 898	27	42 - 521	42	66 - 145	57	89 - 768	72	114 - 39
13	20 - 473	28	44.096	43	67.719	58	91 -342	73	114 96
14	22 048	29	45 - 671	44	69 - 294	59	92 917	74	116 54
15	23 - 623	30	47 - 246	45	70 -869	60	94 492	75	118 - 12

Tons per square inch into kilogrammes per square millimetre—continued

Tons per sq. in.	Kilogr. per mm²	Tons per sq. in.	Kilogr per mm²						
76	119 - 690	91	143 - 313	106	166 - 936	121	190 - 559	136	214 - 182
77	121 -265	92	144 888	107	168 - 511	122	192 - 134	137	215 . 757
78	122 · 840	93	141 - 738	108	170 086	123	193.709	138	217 332
79	124 425	94	148 038	109	171 -661	124	195 - 284	139	218 - 907
80	125 - 989	95	149 -613	110	173 - 236	125	196 -859	140	220 -482
81	127 - 564	96	151 - 187	111	174 - 811	126	198 434	141	222 057
82	129 - 139	97	152 - 762	112	176 - 385	127	200 000	142	223 -632
83	130 - 714	98	154 337	113	177 - 960	128	201 583	143	225 - 206
84	132 - 289	99	155 912	114	179 535	129	203 168	144	226 - 781
85	133 -864	100	157 - 487	115	181 -110	130	204 - 733	145	228 - 356
86	135 439	101	159 062	116	182 685	131	206 - 308	146	229 - 931
87	130 .714	102	160 637	117	184 260	132	207.884	147	231 506
88	138 588	103	162 212	118	185 835	133	209 - 458	148	233 081
89	140 163	104	163 786	119	187 410	134	211 033	149	234 656
90	141 - 738	105	165 -361	120	188 984	135	212 607	150	236 230

Kilogrammes per square millimetre into tons per square inch.

Kilogr. per mm²	Tons per sq. inch.	Kilogr. per mm²	Tons per sq. inch.	Kilogr. per mm²	Tons per sq. inch.	Kilogr. per mm²	Tons per sq. inch.	Kilogr. per mm²	Tons per sq. inch
1	0 634973	26	16 - 4996	51	32 - 309	76	48 - 193	101	63 - 128
2	1 - 2698	27	17 - 1346	52	32 . 944	77	48 - 829	102	63 - 762
3	1.9047	28	17.7696	53	33 - 580	78	49 463	103	64 398
4	2.5396	29	18-4045	54	34 214	79	50 099	104	65 032
5	3.1745	30	19.0347	55	34 - 848	80	50 .733	105	65 - 668
6	3 . 8098	31	19 - 6697	56	35 484	81	51 -369	106	66 - 302
7	4 4448	32	20 - 3046	57	36 - 130	82	52 003	107	66 - 937
- 8	5.0797	33	20 - 3996	58	37 - 754	83	52 639	108	67 - 572
9	5.7147	34	21 - 5746	59	37 - 390	84	53 - 273	109	68 - 207
10	6.3449	35	22 - 2095	60	38 024	85	53 - 909	110	68 842
11	6 - 9799	36	22 8445	61	38.660	86	54 - 543	111	69 - 478
12	7.6148	37	23 - 4795	62	39 293	87	55 179	112	70 -112
13	8 - 2498	38	24 - 1145	63	39 929	88	55 813	113	70 -748
14	8 - 8848	39	24 7494	64	40 563	89	55 449	114	71 -382
15	9.5197	40	25 - 3796	65	42 - 199	90	56 -083	115	72 -018
16	10 - 1547	41	26 0146	66	41 -833	91	56 - 719	116	72 - 652
17	10 .7897	42	26 6495	67	42 - 469	92	57 - 353	117	73 288
18	11 4247	43	27 2845	68	43 - 103	93	57 - 988	118	73 922
19	12 0596	44	27 - 9195	69	43.749	, 94	58 - 622	119	74 558
20	12 - 6898	45	28 - 5544	70	44 · 383	95	59 - 257	120	75 - 192
21	13 - 3248	46	29 - 1894	71	45 018	96	59 - 893	121	75 -823
22	13 9597	47	29 8244	72	45 653	97	60 - 529	122	76 462
	14 5947	48	30 -4594	73	46 299	98	61 -162	123	77 -097
24	15 2297	49	31 0394	74	46 923	99	61 -858	124	77 - 731
25	15 8646	50	31 674	75	47 - 559	100	62 - 492	125	78 - 367

Kilogrammes per square millimetre into tons per square inch-continued

Kilogr.	Tons	Kilogr.	Tons	Kilogr. Tons	Kilogr. Tons	Kilogr. Tons
	per	per	per	per per	per per	per per
per mm²	sq. in.	mm²	sq. in.	mm² sq. in.	mm² sq. in.	mm ² sq. in.
126	79.002	141	88 - 527	156 98 501	171 107 575	186 117 100
127	79 638	142	89-161	157 98 687	172 108 210	187 117 735
128	80 - 272	143	89 - 797	158 99 321	173 108 845	188 118 370
129	80 - 907	144	90 431	159 99 957	174 109 480	189 119 005
130	81 542	145	91 067	160 100 - 591	175 110 - 115	190 119 640
131	82 177	146	91 - 701	161 101 - 227	176 110 750	191 120 275
132	82 811	147	92 337	162 101 860	177 111 385	192 120 910
133	83 - 447	148	92 971	163 102 495	178 112 020	193 121 544
134	84 081	149	93 - 607	164 103 130	179 112 655	194 122 180
135	84.717	150	94 - 241	165 103 - 765	180 113 290	195 122 - 714
136	85 - 351	151	94 - 877	166 104 400	181 113 925	196 123 450
137	85 987	152	95 - 511	167 105 035	182 114 560	197 124 085
138	86 - 621	153	96 - 147	168 105 670	183 115 195	198 124 720
139	87 - 257	154	96 - 781	169 106 305	184 115 830	199 125 354
140	87 891	155	97 415	170 106 940	185 116 465	200 125 990

THERMOMETER

Fahrenheit 32 degrees (freezing point)= 0° centigrade. Fahrenheit 212 degrees (boiling water)= 100° centigrade Number of Fahrenheit less $32 \times \frac{5}{9}$ = degrees centigrade.

Comparison of Centigrade and Fahrenheit Thermometers.

Centigr.	Fahrenheit	Centigr.	Fahrenheit	Centigr.	Fahrenheit	Centigr.	Fahrenheit	Centigr.	Fahrenhei
-40	—40·0	+1	33.8	21	69 · 8	41	105 8	61	141 -8
38	-36.4	2	35 6	22	71.6	42	107 6	62	143.6
36	-32.8	3	37.4	23	73.4	43	109 4	63	145 4
-34	-29.2	4	39 2	24	75 2	44	111.2	64	147 2
-32	—25 ⋅6	5	41.0	25	77.0	45	113 0	65	149.0
-30	-22.0		40.0	00	78 - 8	46	114-8	66	150 · 8
28	-18.4	6	42.8	26	80 6	47	116.6	67	152.6
26	-14.8	7	44.6	27	80·0 82·4	48	118-4	68	154 4
-24	11.2	8	46.4	28	84 2	49	120.2	69	156.2
22	— 7 ⋅6	. 9	48-2	29					
3 4 2 200		10	50-0	30	86.0	50	122 0	70	158.0
20 18	$-4.0 \\ -0.4$	11	51.8	31	87 - 8	51	123 · 8	71	159 8
-16	+ 3.2	12	53.6	32	89-6	52	125.6	72	161 - 6
-14	6.8	13	55.5	33	91.4	53	127 -4	73	163 -4
Î2	10.4	14	57.2	34	93 2	54	129 . 2	74	165 - 2
		15	59.0	35	95.0	55	131.0	75	167.0
10	14.0	10	00.0	0.00	30 V			100	
8	17.6	35.5				# 0	100.0	70	100.0
6	21 -2	16	60.8	36	96.8	56	132.8	76	168 - 8
4	24.8	17	62 · 6	37	98 · 6	57	134.6	77	170 6
— 2	28.4	18	64 · 4	38	100 · 4	58	136.3	78	172 - 4
		19	66 2	39	102 · 2	59	138.2	79	174 - 2
0	32.0	20	68.0	40	104 · 0	60	140.0	80	176.0

Comparison of Centigrade and Fahrenheit Thermometers-continued

Fahrenhei	Centigr.	Fahrenheit	Centigr.	Fahrenheit	Centigr.	Fahrenheit	Centigr.	Fahrenheit	Centigr.
2912 · 0	1600	2174 -0	1190	1400 - 0	760	644-0	340	177 - 8	81
		2192 0	1200	1418.0	770	662 0	350	179.6	82
2930 .0	1610			1436 0	780			181 -4	83
2948.0	1690	2210 .0	1210	1454.0	790	680 0	360	183 - 2	84
2966 0	1620 1630	2228 0	1220	1472.0	800	698.0	370	185.0	85
2984-0	1640	2246 0	1230			716 0	380		
3002 0	1650	2264.0	1240	1490 0	810	734 0	390	186.8	86
3002 0	1000	2282 0	1250	1508 0	820	752 0	400	188-6	87
0000	1000	200		1526 -0	830			190 -4	88
3020 -0	1660	2300 0	1260	1544 0	840	770 0	410	192 · 2	89
3038 0	1670 1680		1270	1562 0	850	788 0	420	194.0	90
3056 -0	1680	2318-0	1270	0.45.678.79		806-0	430		
3074 - 0	1690	2336-0	1280	1580 - 0	860	824 .0	440	195.8	91
3092 - 0	1700	2354 -0	1290	1598-0	870	842 0	450	197.6	92
		2372 -0	1300	1616-0	880			199-4	93
3110.0	1710 1720 1730			1634 0	890	860 0	460	201 - 2	94
3128 0	1720	2390 · 0	1310	1652 0	900	878 0	470	203.0	95
3146.0	1730	2408-0	1320	354 S5544	75.440.5	896-0	480		
3164 0	1740	2426 0	1330	1670 0	910	914 0	490	204.7	98
3182.0	1750	2444 0	1340	1688 0	920	932 0	500	206 - 6	97
	40399	2462 .0	1350	1706 0	930	newsterki		208-4	98
3200 - 0	1760			1724 0	940	950.0	510	210 · 2	99
3218 0	1770 1780	2480 0	1360	1742 0	950	968 - 0	520	212.0	100
3236.0	1780	2498 0	1370			986-0	530	100000000000000000000000000000000000000	
3254 0	1790	2516.0	1380	1760 0	960	1004.0	540	230 .0	110
3272.0	1800	2534 0	1390	1778 0	970	1022 0	550	248.0	120
3212.0	1000	2552 0	1400	1796-0	980			266-0	130
	British take	2002.0	1400	1814.0	990	1040.0	560	284.0	140
3290 .0	1810 1820 · 1830			1832 0	1000	1040-0	570	302-0	150
3308 .0	1820	2570 .0	1410	1002 (1	1000	1058 • 0			
3326 0	1830	2588 · 0	1420	1850 - 0	1010	1076 0	580	320 0	160
3344 .0	1840	2606 0	1430	1000.0	1020	1094.0	590	338.0	170
3362 .0	1850	2624 0	1440	1868 · 0 1886 · 0	1020	1112.0	600	356.0	180
		2642 0	1450	1880.0				374.0	190
3380 0	1860			1904-0	1040 1050	1130 0	610	392.0	200
3398 -0	1870	2660 0	1460	1922 - 0	typo	1148-0	620	302.0	200
3416.0	1860 1870 1880	2678 0	1470	1040 0	1060	1166.0	630	410.0	210
3434 - 0	1890	2696 0	1480	1940 0	1000	1184 0	640	428 0	220
3452 .0	1900	2714 0	1490	1958-0	1070	1202 0	650	446.0	230
0.02		2732 0	1500	1976 - 0	1080	11.50		464.0	240
0.450 0	1010	7.02	100	1994 - 0	1090	1220 0	660	482.0	250
3470 .0	1910 1920	2750 0	1510	2012 0	1100	1238 0	670	482.0	200
3488 0	1920		1520	A Name of St	1,300,000	1256 0	680	roo o	260
3506 0	1930	2768 0		2030 0	1110	1274 0	690	500 0	
3524 0	1940	2786 0	1530	2048 0	1120	1292 0	700	518.0	270
3542 - 0	1950	2804 0	1540	2066-0	1130	1292.0	700	536.0	280
	GSFRAGI	2822 · 0	1550	2084 · 0	1140	\$40 (Fa Fa F		554.0	290
3560 0	1960			2102 0	1150	1310 · 0	710	572 · 0	300
3578 -0	1970	2840 0	1560	19450304		1328 0	720	KINE PROPERTY	A 10 44.7
3596 -0	1980	2858 0	1570	2120 · 0	1160	1346-0	730	590 • 0	310
3614 .0	1990	2876 0	1580	2138 0	1170	1364.0	740	608-0	320
3632 -0	2000	2894.0	1590	2156.0	1180	1382 -0	750	626 · 0	330

INDEX

		Section 2					Page
Air Compressor, Duplex, for engine s	tarting,	A.594					68
						• •	65
Air Pump, High Pressure, Two Stage Aluminium Sheets, Table of Weights	, A.219	2000 AS					66
Aluminium Sheets, Table of Weights	and Di	mensio	ns _				152, 153
Aluminium Tubes, Table of Weights	(ro con	vert iro	m Du	raium	r carer)		158, 159 2
Anodic Treatment of Parts Area, Square Feet into Square Metre	a Matu	o Conv	•••				172, 173
Area, Square Feet into Square Metre Area, Square Metres into Square Fee	t Matr	e Conv	orgion	3	100		172, 173
Area, Square Metres into Square rec	b, mobi	ic Conv	Orsion			100	
Bars, Duralumin, Table of Weights				1,70947	POH S	بالجرائل	154
Bolts	a test						128 to 132
Bomb Release Control. Centralised							80 to 82
Brakes, Hydraulic							6 to 14
Bolts							35
Castings, Weight of							150
Castle Nuts		30.00		11/28/12/11			, 136
Centigrade and Fahrenheit Thermon	ieters, (Compar	ison o	f			183, 184
Centralised Bomb Release Control							80 to 82
Centrifugal Fuel Pump, 2" Mk.VI, A	.163						42, 43
Centrifugal Fuel Pump, 2" Mk.VI, A Centrifugal Fuel Pump, 3" Mk.II*, A Chamber for Remote Reading Oil Th Clins, Pine	1.126, A	.265					39, 40, 41
	ıermom	eter, v		11			45
					Charles and the		104 10
Cocks, Fuel, 2-way, Screw and Screw							16 to 19 20, 21
Cocks, Fuel, 3-way, Screw and Screw			21/A		1885 A F 18		20, 21
Cocks, Fuel, 4-way, ‡ B.S.P., A.156 Cocks, Fuel, 4-way, Special ‡ A.376 Cocks, Fuel, 2-way, Flanged, A.288	3 4 20						23, 24
Cooks, Fuel 2 way, Special 2 , A.57	J, A.JO.						23, 23
Cooks, Fuel 2 way, Flanger, 11.200	w and 9	COPONE					25 25
Cocks, Fuel, 2-way, "L" type, Scre Cocks, Fuel, 2-way, Screw and Hose							$\overline{27}$
Cocks Oil 2-way Screw and Screw							28
Cocks, Oil, 2-way, Screw and Screw Cocks, Oil, 3-way, Screw and Screw							29
Cocks, Oil, 2-way, Screw and Hose							30
Colour Scheme, Standard, for Metals						1000	140 to 144
Compensated Brakes	10,000					4.10	7, 9, 10
Compressor, Air, Duplex, for engine	starting	z. A.594	74.55				68, 69
Control, Centralised, Bomb Release	85081						80
Conversion Tables							161 to 184
Cooler, Oil, Vickers-Potts (Air Minis	try Stai	ndard T	ype A	.325)			70 to 78
Couplings, Metal, for Fuel Pipe							46 to 51
Cubic Values, Gallons into Litres, M							174
Cubic Values, Litres into Gallons, M	etric Co	nversio	ns				175
Direct Action, Hand, Fuel Pump, A							38
Duplex Air Compressor, for engine s	tarting.	A.594	V.	1.0			68, 69
Duralumin, Weight of :-							150 155
Extruded Rectangular Sections						44 - 12	156, 157
Hexagon Rods							155 154
Round Rods and Bars	200						160
Success Dodo						le de la	155
Sheet							158, 159
Wire							154
11110	•						
Engine Starting, Duplex Air Compr	essor fo	r, A.59	f				68
							105 1 105
Feet into Metres, Metric Conversion	3						165 to 167
Feet per Minute into Metres per sec	ona, Me	tric Co	nversi	ons	300		170

INDEX—continued.

The second se						Page
Filter, Fuel, B.E.S.A.						35
Flanged Fuel Plug Cocks Flow, Fuel, Indicator, and Non-Return Valv		76.5795				26 33
Foot Valves and Non-Return Valves		der all				31
Tools Undo on Ininto						117 to 119
Fuel Cocks, Plug, 2-way, † to 1½ B.S.P. Fuel Cocks, Plug, 3-way, † to 1½ B.S.P. Fuel Cocks, Plug, 4-way, † to 1½ B.S.P. A.156 Fuel Cocks, Plug, 4-way, Fuel Cocks, Plug, 4-way, Popula † A.276 a						16 to 19
Fuel Cocks, Plug, 3-way, 1" to 11" B.S.P.						20, 21
Fuel Cooks, Plug, 4 way, 4, B.S.P., A.156	~ d A 2	07				$\frac{22}{24}$
						24 26
Fuel Cocks, Plug, 2-way "L" type, 1" to 11	" B.S.	P.				25
Fuel Cocks, Plug, 2-way "L" type, ‡" to 11 Fuel Cocks, Plug, 2-way Screw and Hose, ‡"	to 1"	B.S.P.				27
Fuel Filter, B.E.S.A., A.113 (A.G.S.601, and	620) 2	1.202 (A.G.8	s. 600)		35
Fuel Flow Indicator and Non-Return Valve			•			33
Fuel Pipe Metal Couplings Fuel Pump, Centrifugal, 3" Mk. II*, A.126						46 to 51 39, 40, 41
Fuel Pump, Centrifugal, 2" Mk. VI, A.163						42, 43
						38
Fuel Pump, Hand, Lever Action, Mk. III, A	.130					36, 37
		类的 温和 。 从。				34
Fuel System Fittings						15 to 51
Gallons into Litres, Metric Conversions			10			174, 175
Cauges and Weights of Plates	10400					151
Gauges, Table of						145
Gauges, Table of						52
TI I D. LAN TO ID 1000			344			
Hand, Direct Action, Fuel Pump, A.299	120					38
Hand, Lever Action, Fuel Pump, Mk.III, A. Handle Lever (Special), for 2-way Fuel Cock			40.00	7		36, 37 19
Hexagon Rods, Duralumin, Table of Weight						155
High Pressure Single Stage Air Pump A 599	0.000					. 65
High Pressure Two Stage Air Pump, A.219						66
Hydraulic Brakes						6 to 14
Inches to Millimetres, Conversion Tables						
Indicator, Fuel Flow and Non-Return Valve						162 to 164 33
indicator, ruci riow and non-resum varve						
Joints, Fork						117 to 119
			1			
Kilogrammes into Pounds, Metric Conversion					Araba and	179 to 180
Kilogrammes per Square Metre into Poun	ds pe	r Squ	are l	oot	Metric	
Conversions Kilogrammes per Square Millimetre into T	one n	er Sou	1070	Inch	Matria	181
					MOULIC	182
Kilometres into Miles, Metric Conversions	••			Wale.		168, 169
Knots into Kilometres per hour, Metric Conv	version	8				170
T						
Lever Action, Hand, Fuel Pump, Mk. III, A						36, 37
Lever Handle (Special), for 2-way Fuel Cock Litres into Gallons, Metric Conversions						19 175
Lock Nuts		da in				134
 Apple 1888 (1988) 1983 (1988) 1983 (1988) 		MARK TOWN				
Metal Fuel Pipe Couplings		action, and or the		par militario	with the state of	46 to 51
Metals, Standard Colour Scheme for Metres into Feet, Metric Conversions						140 to 144
Metres into Feet, Metric Conversions		110				167, 168
Metres per second into Feet per minute, Met Metric Conversion Tables			цв	STATEMENT.		171
Metric Conversion Tables		Cours of the			1	161 to 184

INDEX—continued.

							Page
	Miles into Kilometres, Metric Conversions Millimetres into Inches, Metric Conversions		•				168 162, 164
	Non Comogive Steel Bine						124 to 126
	Non-Return and Fuel Flow Indicator						33
	Non-Corrosive Steel Pins			计算时间			31
	Non-Return Valve 3" for Compressed Air N	Maina	A 608				67
	Non-Return Valve, Horizontal type	275	6.00	27.7.2			32
	Non-Return and Foot Valves Non-Return Valve, §, for Compressed Air M Non-Return Valve, Horizontal type Nuts						133 to 136
	Oil Cock, 2-way, Plug type, Screw and Screw	w, ‡″ t	o 1"				28
	Oil Cock, 3-way, Screw and Screw, 1" to 1" Oil Cock, 2-way, Screw and Hose		• •			17	29 30
	Oil Cooler Vielsore Dotte (Air Ministry Stan	dond 1	Treno A	2981			70 to 78
	Oil Spacial for "Oleo " Units	uaiu i	rypoza.	320)			10 10 18
	Oil, Special, for "Oleo" Units Oil System Fittings					28	to 30, 35, 45
	Oil Thermometer, Remote Reading, Chambe	er for	VGS	81 i			45
	Oleo-pneumatic Undercarriages and Tail Ski	ids		ONL COM			'53 to 64
	Pins for Fork Joints Pipe Clips Pipe Couplings, Metal Plug Cocks, Fuel Plug type Oil Cocks Puel type Oil Cocks Puel Type Oil Cocks Puel Type Oil Cocks						120 to 126
	Pipe Clips				g Gerry (44
	Pipe Couplings, Metal						46 to 51
	Plug Cocks, Fuel						15 to 27
	Plug type Oil Cocks						28 to 30
	Total (vickors) On Cooler, (zin minsury bra	manna	Type 2	A.325)			70 to 78
	Pounds into Kilogrammes, Metric Conversion	ons	91.347.5			200	175 to 178
	Pounds per Square Foot into Kilogramn			re Me	tre, M	etric	
	Conversions Protection against Corrosion Pulleys, Universal, and Guards				3.5		180
	Protection against Corrosion						2
	Pulleys, Universal, and Guards	.00				0.00	52 65
	Dump, Air, High Processor, Shigh Stage, A.S.	0			100		66
	Pump Centrifugel Fuel Pump 2" Mr VI	Δ 169			li Maria	Was.	42, 43
	Pump Centrifued Euel Pump 3" Mk II*	A 19	g ·	1025			39, 40, 41
	Pump (Compressor) Dupley Air for engin	e start	ing A	594	Selme.		68
	Pump, Hand, Direct Action, A.299						38
	Protection against Corrosion Pulleys, Universal, and Guards. Pump, Air, High Pressure, Single Stage, A.5 Pump, Air, High Pressure, Two Stage, A.21 Pump, Centrifugal, Fuel Pump, 2", Mk.VI., Pump, Centrifugal, Fuel Pump, 3", Mk. II*, Pump, (Compressor), Duplex, Air, for engin Pump, Hand, Direct Action, A.299 Pump, Hand, Lever Action, A.130						36, 37
	Rate of Climb, Feet per minute into	Meti	res per	seco	nd, M	letric	
	Conversions						170, 171
	Rate of Climb, Metres per second into l	reet I	oer mu	iute, I	Aetric	Con-	
	versions Relief Valve, Fuel A.372 Remote Reading Oil Thermometer, Chambe						171
	Possets Possess Oil Missess at Charles	40					34
	Pode Havegon Durelymin Table of Weight	or tor				1.	45 15
	Rods, Hexagon, Duralumin, Table of Weigh	ire.					154
	Rode Square Duralumin Table of Weights				Value I		15
	Royal Aircraft Establishment—Report on I	Fuel C	oeka 				16, 17
	Royal Aircraft Establishment—Report on C	Centrif	ngal Fr	iel Pur	nn Mi	c.TT*	4)
	Rods, Round, Duralumin, Table of Weights Rods, Square, Duralumin, Table of Weights Royal Aircraft Establishment—Report on I Royal Aircraft Establishment—Report on C Royal Aircraft Establishment—Report on C	entrif	ugal Fu	el Pun	m Mk.	νT	$ar{4}$
				81.F(10)			
	Sheets, Aluminium, Table of Weights and I	Dimens	sions				152, 153
	Sheets, Duralumin Table of Weights and D)imens	ions				160
Ó	Single Stage, High Pressure Air Pump. A.59	99					66
	Slotted Nuts						138
	Single Stage, High Pressure Air Pump. A.56 Slotted Nuts Special Lever Handle for 2-way Fuel Cocks Square Measure, Metric Conversions						19
	Square Measure, Metric Conversions						172, 17
			5400/1959				

INDEX—continued.

							Page
Square Rods, Duralumin, Table of We Standard Colour Scheme for Metals Steerable Brakes Streamline Wires Suspension—Vickers Oleo-pneumatic Users	ights						155
Standard Colour Scheme for Metals							140 to 144
Steerable Brakes							6 to 14
Streamline Wires				•			83 to 102
Suspension—Vickers Oleo-pneumatic U	Inder	arriage	and T	ail Sk	id Uni	8	53 to 64
Swaged Tie-rods							103 to 115
5.00							
Tables :—							
Colour Scheme for Metals, Standa	rd						140 to 144
Gauges, Equivalents (English and	Metri	αÌ					145
Metric Conversions	and the	9,					161 to 184
Colour Scheme for Metals, Standa Gauges, Equivalents (English and Metric Conversions Tube Constants							146 to 140
Weights of Aluminium Tubes (to	CODTIA	et from	Durah	min l	Dota)		158, 159
Waights of Aluminium Sheets							159 153
Weights of Aluminium Sheets Weights of Castings . Weights of Duralumin Extruded I Weights of Duralumin Hexagon R Weights of Duralumin Round Rou Weights of Duralumin Sheets Weights of Duralumin Square Rou Weights of Duralumin Tubes Weights of Duralumin Tubes Weights of Duralumin Wire Weights of Plates, Duralumin and Thermometer, Comparison of Centigra Thermometer, Oil, Remote Reading, O							152, 153 150 156, 157
Weights of Duralumin Extraded I	11,000,000			4			160 167
Weights of Duralumin Havagon B	201	iguiai i	OUVIOUS	•			150, 157
Weights of Duralumin Down Do	1 1	D					
Weights of Duratumin Kound Kot	I BIILL	Dars					154
Weights of Duratumin Sheets			• •		• •	• •	160
weights of Duraiumin Square Ro	1						155
Weights of Duraiumin Tubes	• •	• •	•				158 to 159
Weights of Duraiumin Wire							154
Weights of Plates, Duralumin and	l Mild	Steel	•				151
Thermometer, Comparison of Centigra	de and	l Fahre	nheit d	egree	8		151 183, 184
Thermometer, Oil, Remote Reading, C Tie-rods, Swaged	hamb	er for					
Tie-rods, Swaged							103 to 115
Tons per Square Inch into Kilogran	nmes	per Squ	ıare M	illime	tre, M	etric	
Conversions							181, 182
Conversions							146 to 149
Tubes, Aluminium, Table of Weights (to cor	vert fre	ım Dırı	alum.	in Dats	ı)	158, 159
Tubes, Duralumin, Table of Weights							158, 159 158, 159 66
Tubes, Duralumin, Table of Weights Two-stage High Pressure Air Pump, A	.219						66
Universal Pullage and Guards							52
Universal Pulleys and Guards Useful Tables					• •		127 to 184
Caerm rables					••		127 10 104
Valves, Foot and Non-Return Valve, Non-Return and Fuel Flow Inc Valve, § Non-Return, for Compressed Valve, Relief, Fuel, A.372							
Valves, Foot and Non-Return							31
Valve, Non-Return and Fuel Flow Inc	licator						
Valve, { Non-Return, for Compressed	Air M	lains, A	.,608				67
Valve, Rehef, Fuel, A.372							34
Weights of :—	1000						
Aluminium Sheets							152, 153
Aluminium Sheets	n Dui	alumin	Data)				158, 159
Castings	Warrier.		12100 710				150
Duralumin Extruded Rectangular	Secti	one		30,440	V:131.02-03		156, 157
Duralumin Hayagan Rode	2000	0.113					155
Duralumin Pound Pods and Pare							154
Duralumin Hexagon Rods Duralumin Round Rods and Bars Duralumin Sheet Duralumin Square Rods Duralumin Tubes Duralumin Tubes Plates, Duralumin and Mild Steel Weights, Metric Conversion Tables Wheel Brakes			••				160
Durahmin Savara Dode			•	•			
Duratumin Square fous			••				155
Duraiumin Lubes		••				• •	158, 159
Duraiumin wire			AT TO SEE				154
Plates, Duraiumin and Mild Steel		•				• • •	151
weights, Metric Conversion Tables							175 to 183
Wheel Brakes Wire, Duralumin, Table of Weights							6 to 14
Wire, Duralumin, Table of Weights							154
Wires, Streamline							83 to 102